Skip to main content
Log in

Cross-sectional investigation of radiation damage of 2 MeV proton-irradiated silicon carbide

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Cross-sectional investigation is an important method to study ion irradiation effects in the depth direction. In this study, 2 MeV H+ was implanted in 6H-SiC single crystals to investigate the effects of light ion irradiation on SiC. Raman spectroscopy and scanning electronic microscopy (SEM) were carried out on cross-sectional samples to reveal the in-depth damage states and dopant behavior. The most damaged region is a little shallower than that predicted by the SRIM procedure, owing to the uncertainty in SRIM simulations. Layered structures representing zones of varying damage after 2 MeV H ion irradiation are clearly observed. Two bands are observed in SEM images, of which on band corresponds to the damage peak, while the other band at the end of the H ion-affected area is probably a result of H diffusion propelled by a hydrogen-rich layer during irradiation. A charge accumulation effect related with conductivity on the sample surfaces during SEM tests is observed in the H-implanted area. A model is proposed to explain these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron. 39, 1409–1422 (1996). https://doi.org/10.1016/0038-1101(96)00045-7

    Article  Google Scholar 

  2. C. Raynaud, Silica films on silicon carbide: a review of electrical properties and device applications. J. Non-Cryst. Solids 280, 1–31 (2001). https://doi.org/10.1016/s0022-3093(00)00350-1

    Article  Google Scholar 

  3. A.A. Lebedev, A.I. VeÏnger, D.V. Davydov et al., Radiation defects in n-4H-SiC irradiated with 8-MeV protons. Semiconductors 34, 1016–1020 (2000). https://doi.org/10.1134/1.1309411

    Article  Google Scholar 

  4. N.B. Strokan, A.M. Ivanov, N.S. Savkina et al., Radiation resistance of transistor-and diode-type SiC detectors irradiated with 8-MeV protons. Semiconductors 38, 807–811 (2004). https://doi.org/10.1134/1.1777605

    Article  Google Scholar 

  5. G. Alfieri, E.V. Monakhov, B.G. Svensson, Defect energy levels in hydrogen-implanted and electron-irradiated n-type 4H silicon carbide. J. Appl. Phys. 98, 113524 (2005). https://doi.org/10.1063/1.2139831

    Article  Google Scholar 

  6. H.J. von Bardeleben, J.L. Cantin, I. Vickridge, Proton-implantation-induced defects in n-type 6 H-and 4 H-SiC: an electron paramagnetic resonance study. Phys. Rev. B. 62, 10126 (2000). https://doi.org/10.1103/PhysRevB.62.10126

    Article  Google Scholar 

  7. Y. Han, B.S. Li, Z.G. Wang et al., H-ion irradiation-induced annealing in He-ion implanted 4H-SiC. Chin. Phys. Lett. 34, 012801 (2017). https://doi.org/10.1088/0256-307X/34/1/012801

    Article  Google Scholar 

  8. N.B. Strokan, A.M. Ivanov, A.A. Lebedev, Transport of the charge carriers in SiC-detector structures after extreme radiation fluences. Nucl. Instrum. Meth. A. 569, 758–763 (2006). https://doi.org/10.1016/j.nima.2006.08.077

    Article  Google Scholar 

  9. H.J. von Bardeleben, J.L. Cantin, Electron paramagnetic resonance study of proton implantation induced defects in monocrystalline 4H- and 6H-SiC. Nucl. Instrum. Meth. B 186, 201–205 (2002). https://doi.org/10.1016/S0168-583X(01)00884-9

    Article  Google Scholar 

  10. A.A. Lebedev, B.Ya. Ber, G.A. Oganesyan et al., Effect of 3C-SiC irradiation with 8 MeV protons. Mater. Sci. Forum 897, 311–314 (2017). https://doi.org/10.4028/www.scientific.net/MSF.897.311

    Article  Google Scholar 

  11. N. Achtziger, J. Gillenberger, W. Witthuhn et al., Hydrogen passivation of silicon carbide by low-energy ion implantation. Appl. Phys. Lett. 73, 945 (1998). https://doi.org/10.1063/1.122047

    Article  Google Scholar 

  12. M.K. Linnarsson, J.P. Doyle, B.G. Svensson, Diffusion of hydrogen in 6H silicon carbide. Mater. Res. Soc. Symp. Proc. 423, 625 (1996). https://doi.org/10.1557/PROC-423-62

    Article  Google Scholar 

  13. J.F. Ziegler, J.P. Biersack, U. Littmarck, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985)

    Google Scholar 

  14. H.Y. Kim, J. Kim, J.A. Freitas Jr., Penetration depth profiling of proton-irradiated 4H-SiC at 6 MeV and 8 MeV by micro-Raman spectroscopy. Appl. Surf. Sci. 270, 44–48 (2013). https://doi.org/10.1016/j.apsusc.2012.12.014

    Article  Google Scholar 

  15. X. Wang, Y.W. Zhang, S.Y. Liu et al., Depth profiling by Raman spectroscopy of high-energy ion irradiated silicon carbide. Nucl. Instrum. Meth. B 319, 55–61 (2014). https://doi.org/10.1016/j.nimb.2013.10.017

    Article  Google Scholar 

  16. G. Guimbretière, L. Desgranges, A. Canizarès et al., Determination of in-depth damaged profile by Raman line scan in a pre-cut He2+ irradiated UO2. Appl. Phys. Lett. 100, 251914 (2012). https://doi.org/10.1063/1.4729588

    Article  Google Scholar 

  17. S. Miro, G. Velisa, L. Thomé et al., Monitoring by Raman spectroscopy of the damage induced in the wake of energetic ions. J. Raman Spectrosc. 45, 481–486 (2014). https://doi.org/10.1002/jrs.4482

    Article  Google Scholar 

  18. K. Huang, Q. Jia, T.G. You et al., Defect formation in MeV H+ implanted GaN and 4H-SiC investigated by cross-sectional Raman spectroscopy. Nucl. Instrum. Meth. B. Article in press (2017). https://doi.org/10.1016/j.nimb.2017.02.027

  19. R. Devanathan, W.J. Weber, Displacement energy surface in 3C and 6H-SiC. J. Nucl. Mater. 278, 258–265 (2000). https://doi.org/10.1016/S0022-3115(99)00266-4

    Article  Google Scholar 

  20. S. Sorieul, J.M. Costantini, L. Gosmain et al., Raman spectroscopy study of heavy-ion-irradiated α-SiC. J. Phys.: Condens. Matter 18, 5235–5251 (2006). https://doi.org/10.1088/0953-8984/18/22/022

    Google Scholar 

  21. J. Lindhard, V. Nielsen, M. Scharff, Approximation method in classical scattering by screened coulomb fields. Matemat. Fysis. Meddel. 36, 1–32 (1968)

    Google Scholar 

  22. H.Z. Xue, Y. Zhang, Z. Zhu et al., Damage profiles and ion distribution in Pt-irradiated SiC. Nucl. Instrum. Meth. B 286, 114–118 (2012). https://doi.org/10.1016/j.nimb.2012.02.014

    Article  Google Scholar 

  23. Y. Zhang, I.T. Bae, K. Sun et al., Damage profile and ion distribution of slow heavy ions in compounds. J. Appl. Phys. 105, 104901 (2009). https://doi.org/10.1063/1.3118582

    Article  Google Scholar 

  24. K. Jin, Y. Zhang, H. Xue et al., Ion distribution and electronic stopping power for Au ions in silicon carbide. Nucl. Instrum. Meth. B 307, 65–70 (2013). https://doi.org/10.1016/j.nimb.2013.02.051

    Article  Google Scholar 

  25. C. Lan, J.M. Xue, Y. Zhang et al., Molecular dynamics simulations of ion range profiles for heavy ions in light targets. Nucl. Instrum. Meth. B 286, 45–60 (2012). https://doi.org/10.1016/j.nimb.2012.01.020

    Article  Google Scholar 

  26. S. Moll, Y. Zhang, Z. Zhu et al., Comparison between simulated and experimental Au-ion profiles implanted in nanocrystalline ceria. Nucl. Instrum. Meth. B 307, 93–97 (2013). https://doi.org/10.1016/j.nimb.2012.12.119

    Article  Google Scholar 

  27. Y. Zhang, W.J. Weber, Electronic stopping of He, B, N, and Al in SiC. Appl. Phys. Lett. 83, 1665 (2003). https://doi.org/10.1063/1.1604473

    Article  Google Scholar 

  28. Y. Zhang, W. Weber, C. Wang, Electronic stopping powers in silicon carbide. Phys. Rev. B. 69, 205201 (2004). https://doi.org/10.1103/PhysRevB.69.205201

    Article  Google Scholar 

  29. J.F. Ziegler, J.M. Manoyan, The stopping of ions in compounds. Nucl. Instrum. Meth. B 35, 215–228 (1988). https://doi.org/10.1016/0168-583X(88)90273-X

    Article  Google Scholar 

  30. Y. Zhang, T. Varga, M. Ishimaru et al., Competing effects of electronic and nuclear energy loss on microstructural evolution in ionic-covalent materials. Nucl. Instrum. Meth. B 327, 33–43 (2014). https://doi.org/10.1016/j.nimb.2013.10.095

    Article  Google Scholar 

  31. W.J. Weber, D.M. Duffy, L. Thomé, Y. Zhang, The role of electronic energy loss in ion beam modification of materials. Curr. Opin. Solid State Mater. Sci. 19, 1–11 (2015). https://doi.org/10.1016/j.cossms.2014.09.003

    Article  Google Scholar 

  32. L. Thomé, A. Debelle, F. Garrido et al., Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam. Appl. Phys. Lett. 102, 141906 (2013). https://doi.org/10.1063/1.4801518

    Article  Google Scholar 

  33. M.K. Linnarsson, M.S. Janson, S. Karlsson et al., Diffusion of light elements in 4H- and 6H-SiC. Mater. Sci. Eng., B 61, 275–280 (1999). https://doi.org/10.1016/S0921-5107(98)00517-0

    Article  Google Scholar 

  34. A. Barcz, M. Kozubal, R. Jakieła et al., Diffusion and impurity segregation in hydrogen-implanted silicon carbide. J. Appl. Phys. 115, 223710 (2014). https://doi.org/10.1063/1.4882996

    Article  Google Scholar 

  35. K.H. Kim, Z. Akase, T. Suzuki et al., Charging effects on SEM/SIM contrast of metal/insulator system in various metallic coating conditions. Mater. Trans. 51, 1080–1083 (2010). https://doi.org/10.2320/matertrans.M2010034

    Article  Google Scholar 

  36. J.G. Laven, H.J. Schulze, V. Haublein et al., Dopant profiles in silicon created by MeV hydrogen implantation: influence of annealing parameters. Phys. Status Solidi C 8, 697–700 (2011). https://doi.org/10.1002/pssc.201000161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Wang or Zi-Qiang Zhao.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11705169, 91426304 and 91226202).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, YW., Han, D. et al. Cross-sectional investigation of radiation damage of 2 MeV proton-irradiated silicon carbide. NUCL SCI TECH 29, 57 (2018). https://doi.org/10.1007/s41365-018-0386-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0386-0

Keywords

Navigation