Determinations of 171Er half-life and some 171Tm transition energies


The neutrons have been captured by Erbium nuclei which were received by using clinical electron linear accelerator. In this experiment, the possibility of the neutron capture process has been observed because of emitted neutrons appearing in the experimental area. In particular, neutron capture of 170Er nucleus has been observed. After the neutron capture of 170Er nucleus, the unstable 171Er has been formed and decayed into the 171Tm. By using this reaction path, some transition energies of 171Tm obtained from the residual activity measurements and the half-life of 171Er have been determined, and they are in agreement with adopted values in the literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    K. Strauch, Recent studies of photonuclear reactions. Annu. Rev. Nucl. Sci. 2, 105–128 (1953).

    Article  Google Scholar 

  2. 2.

    C. Segebade, H.-P. Weise, G.J.L. Lamport, Photon Activation Analysis (Walter de Gruyter and Co., Berlin, 1987)

    Google Scholar 

  3. 3.

    M. Schumacher, Photo nuclear reactions. J. Phys. G: Nucl. Phys. 14(Suppl.), S235–S255 (1988)

    Article  Google Scholar 

  4. 4.

    IAEA-TECDOC-1178, Handbook on Photonuclear Data for Applications Cross-Sections and Spectra (IAEA, Vienna, 2000)

    Google Scholar 

  5. 5.

    V.M. Mazur, D.M. Symochko, Z.M. Bigan, T.V. Poltorzhytska, Excitation of the 119Tem, 121Tem, 123Tem, 127Tem, and 129Tem isomers in (γ, n) reactions from 10 to 22 MeV. Phys. Rev. C 87, 044604 (2013).

    Article  Google Scholar 

  6. 6.

    İ. Boztosun, H. Dapo, S.F. Özmen, et al., The results of the first photonuclear reaction performed in Turkey: the zinc example. Turk. J. Phys. 38, 1–9 (2014).

    Article  Google Scholar 

  7. 7.

    J. Green, Z.J. Sun, D. Wells, H. Maschner, Using photon activation analysis to determine concentrations of unknown components in reference materials. AIP Conf. Proc. 1336, 497–501 (2011).

    Article  Google Scholar 

  8. 8.

    J. Chadwick, M. Goldbaher, A nuclear photo-effect: disintegration of the diplon by-Rays. Nature 134, 237–238 (1934).

    Article  MATH  Google Scholar 

  9. 9.

    D. Filipescu, A. Anzalone, D.L. Balabanski, et al., Perspectives for photonuclear research at the extreme light infrastructure-nuclear physics (ELI-NP) facility. Eur. Phys. J. A 51, 185 (2015).

    Article  Google Scholar 

  10. 10.

    F. Dulger, S. Akkoyun, T. Bayram, et al., Energy levels and half-lives of gallium isotopes obtained by photo-nuclear reaction. J. Phys: Conf. Ser. 590, 012051 (2015).

    Google Scholar 

  11. 11.

    I. Boztosun, H. Ðapo, M. Karakoç, et al., Photonuclear reactions with zinc: a case for clinical linacs. Eur. Phys. J. Plus 130, 185 (2015).

    Article  Google Scholar 

  12. 12.

    S. Akkoyun, T. Bayram, F. Dulger, et al., Energy level and half-life determinations from photonuclear reaction on Ga target. Int. J. Mod. Phys. E 25, 1650045 (2016).

    Article  Google Scholar 

  13. 13.

    D. Radford, ESCL8R and LEVIT8R: software for interactive graphical analysis of HPGe coincidence data sets. Nucl. Instrum. Methods Phys. Res. A 361, 297–305 (1995).

    Article  Google Scholar 

  14. 14.

    R. Brun, F. Rademakers, ROOT—an object oriented data analysis framework. Nucl. Instrum. Methods Phys. Res. A 389, 81–86 (1997).

    Article  Google Scholar 

  15. 15.

    R. Berbeco, S.B. Jiang, G.C. Sharp, et al., Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors. Phys. Med. Biol. 49, 243–255 (2004).

    Article  Google Scholar 

  16. 16.

    P. Mohr, S. Brieger, G. Witucki, et al., Photoactivation at a clinical LINAC: the 197Au(γ, n)196Au image reaction slightly above threshold. Nucl. Instrum. Methods A 580, 1201–1208 (2007).

    Article  Google Scholar 

  17. 17.

    A. Alfuraih, M.P.W. Chin, N.M. Spyrou, Measurements of the photonuclear neutron yield of 15 MV medical linear accelerator. J. Radioanal. Nucl. Chem. 278, 681–684 (2008).

    Article  Google Scholar 

  18. 18.

    J.H. Chao, M.T. Liu, S.A. Yeh, et al., Using medical accelerators and photon activation to determine Sr/Ca concentration ratios in teeth. Appl. Radiat. Isot. 67, 1121–1126 (2009).

    Article  Google Scholar 

  19. 19.

    T. Fujibuchi, S. Obara, H. Sato, et al., Estimate of photonuclear reaction in a medical linear accelerator using a water-equivalent phantom. Prog. Nucl. Sci. Technol. 2, 803–807 (2011)

    Article  Google Scholar 

  20. 20.

    M. Tatari, A.H. Ranjbar, Design of a photoneutron source based on 10 MeV electrons of radiotherapy linac. Ann. Nucl. Energy 63, 69–74 (2014).

    Article  Google Scholar 

  21. 21.

    C.M. Baglin, Nuclear data sheets for A = 171. Nucl. Data Sheets 96, 399–610 (2002).

    Article  Google Scholar 

Download references


Authors would like to thank to H. Djapo, F. Dulger, and I. Boztosun from Akdeniz University Nuclear Research and Application Center.

Author information



Corresponding author

Correspondence to Tuncay Bayram.

Additional information

This work was supported by the Sinop University Scientific Research Projects Coordination Unit. Project Number: FEF-1901-14-04, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bayram, T., Akkoyun, S. Determinations of 171Er half-life and some 171Tm transition energies. NUCL SCI TECH 29, 39 (2018).

Download citation


  • Erbium
  • Thulium
  • Half-life
  • Transition energy
  • Bremsstrahlung
  • Photonuclear reaction