Skip to main content

Advertisement

Log in

Study on the performance of a large-size CsI detector for high energy γ-rays

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The measurement of high-energy \(\gamma \)-rays is an important experimental method to study the giant resonance in a nucleus, \(\gamma \) reaction in nuclear astrophysics, and so on. The performance of a large-size CsI detector for \(\gamma \)-rays detection is studied by comparison between the experimental measurements and GEANT4 simulation. The reliability of the simulated efficiency for low-energy \(\gamma \)-rays is verified by comparing with the experimental data. The efficiency of the CsI detector for high-energy \(\gamma \)-rays was obtained by the GEANT4 simulation. The simulation shows that the detection efficiency of 20 MeV \(\gamma \)-rays can reach 3.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Tanihata, H. Hamagaki, O. Hashimoto et al., Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676

    Article  Google Scholar 

  2. T. Kobayashi, O. Yamakawa, K. Omata et al., Projectile fragmentation of the extremely neutron-rich nucleus \(^{11}\)Li. Phys. Rev. Lett. 60, 2599 (1988). https://doi.org/10.1103/PhysRevLett.60.2599

    Article  Google Scholar 

  3. S.Q. Ye, X.Z. Cai, D.Q. Fang et al., Systematic study of dynamical dipole mode via the isospin-dependent Boltzmann-Uehling-Uhlenbeckmodel. Nucl. Sci. Tech. 25, 030501 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.030501

    Google Scholar 

  4. K.A. Snover, Giant resonances in excited Nuclei. Ann. Rev. Nucl. Part. Sci. 36, 545 (1986). https://doi.org/10.1146/annurev.ns.36.120186.002553

    Article  Google Scholar 

  5. J.J. Gaardhoje, Nuclear structure at high excitation energy studied with giant resonances. Ann. Rev. Nucl. Part. Sci. 42, 483 (1992). https://doi.org/10.1146/annurev.ns.42.120192.002411

    Article  Google Scholar 

  6. C. Tao, Y.G. Ma, G.Q. Zhang et al., Symmetry energy dependence of the pygmy and giant dipole resonances in an isospin dependent quantum molecular dynamics model. Nucl. Sci. Tech. 24, 030502 (2013). https://doi.org/10.13538/j.10018042/nst.03.001

    Google Scholar 

  7. C. Tao, Y.G. Ma, G.Q. Zhang et al., Pygmy and giant dipole resonances by coulomb excitation using a quantum molecular dynamics model. Phys. Rev. C 87, 014621 (2012). https://doi.org/10.1103/PhysRevC.87.014621

    Article  Google Scholar 

  8. P. Paul, M. Thoennessen, Fission time scales from giant dipole resonances. Ann. Rev. Nucl. Part. Sci. 44, 65 (1994). https://doi.org/10.1146/annurev.ns.44.120194.000433

    Article  Google Scholar 

  9. R.F. Chen, H.S. Xu, R.R. Fan et al., Property measurement of the CsI (Tl) crystal prepared at IMP. Chin. Phys. C 32, 135 (2008). https://doi.org/10.1088/1674-1137/32/2/012

    Article  Google Scholar 

  10. S.S. Wang, Y.G. Ma, X.G. Cao et al., Investigation of giant dipole resonances in heavy deformed nuclei with an extended quantum molecular dynamics model. Phys. Rev. C. 95, 054615 (2017). https://doi.org/10.1103/PhysRevC.95.054615

    Article  Google Scholar 

  11. B.S. Huang, Y.G. Ma, W.B. He, Photonuclear reaction as a probe for alpha-clustering nuclei in the quasi-deuteron region. Phys. Rev. C. 95, 034606 (2017). https://doi.org/10.1103/PhysRevC.95.034606

    Article  Google Scholar 

  12. W.B. He, Y.G. Ma, X.G. Cao et al., Giant dipole resonance as a fingerprint of alpha clustering configurations in 12C and 16O. Phys. Rev. Lett. 113, 032506 (2014). https://doi.org/10.1103/PhysRevLett.113.032506

    Article  Google Scholar 

  13. C.Q. Guo, Y.G. Ma, W.B. He et al., Isovector dipole resonance and shear viscosity in low energy heavy-ion collisions. Phys. Rev. C. 95, 054622 (2017). https://doi.org/10.1103/PhysRevC.95.054622

    Article  Google Scholar 

  14. K. Wang, Y.G. Ma, G.Q. Zhang et al., Giant dipole resonance in proton capture reactions using an extended quantum molecular dynamics model. Phys. Rev. C. 95, 014608 (2017). https://doi.org/10.1103/PhysRevC.95.014608

    Article  Google Scholar 

  15. W. Xu, J.G. Chen, W. Guo et al., Shanghai laser electron gamma source (SLEGS). Nucl. Phys. Rev. 25, 129 (2008). https://doi.org/10.11804/NuclPhysRev.25.02.129

    Google Scholar 

  16. GEANT4 Collaboration, GEANT4 User’s Guide for Application Developers (2015). http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/InstallationGuide/BackupVersions/V10.2/fo/BookInstalGuide.pdf

  17. http://www.hamamatsu.com

  18. M. Moszynski, A. Syntfeld-Kazuch, L. Swiderski et al., Energy resolution of scintillation detectors. Nucl. Instrum. Method Phys. Res. A 805, 25 (2016). https://doi.org/10.1016/j.nima.2015.07.059

    Article  Google Scholar 

  19. I. Meric, G.A. Johansen, M.B. Holstad et al., Monte Carlo modelling of gamma-ray stopping efficiencies of Geiger Müller counters. Nucl. Instrum. Method Phys. Res. A 636, 61 (2011). https://doi.org/10.1016/j.nima.2011.01.083

    Article  Google Scholar 

  20. K. Yue, H.S. Xu, J.J. Liang et al., Monte Carlo simulation of CsI(Tl) Scintillator Detector with GEANT4 ToolKit. Nucl. Phys. Rev 27, 445 (2010). https://doi.org/10.11804/NuclPhysRev.27.04.445

    Google Scholar 

  21. G.A. Kumar, I. Mazumdar, D.A. Gothe, Experimental measurements and GEANT4 simulations for a comparative study of efficiencies of LaBr 3:Ce, NaI(Tl), and BaF2. Nucl. Instrum. Method Phys. Res. A. 610, 522 (2009). https://doi.org/10.1016/j.nima.2009.08.075

    Article  Google Scholar 

  22. A. Giaz, L. Pellegri, S. Riboldi et al., Characterization of large volume \(3.5^{\prime \prime }\times 8^{\prime \prime }\) LaBr3:Ce detectors. Nucl. Instrum. Method Phys. Res. A 729, 910 (2013). https://doi.org/10.1016/j.nima.2013.07.084

    Article  Google Scholar 

  23. M. Ciema, D. Balabanski, M. Csatls et al., Measurements of high-energy \(\gamma \)-rays with LaBr 3: Ce detectors. Nucl. Instrum. Method Phys. Res. A 608, 76 (2009). https://doi.org/10.1016/j.nima.2009.06.019

    Article  Google Scholar 

  24. K. Yue, Design and simulation studies of CsI(Tl) scintillator detector array for external target facility at HIRFL-CSR. PhD Thesis, University of Chinese Academy of Sciences. 52 (2010), p. 67. http://ir.impcas.ac.cn/handle/113462/8329ir.impcas.ac.cn/handle/113462/8329

  25. B.P. Singh, H.C. Evans, Relative efficiency of Ge(Li) gamma ray detectors from 0.5 to 12 MeV. Nucl. Instrum. Method Phys. Res. A 97, 475 (1971). https://doi.org/10.1016/0029-554X(71)90249-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Qing Fang.

Additional information

This work was supported by the Major State Basic Research Development Program of China (No. 2013CB834405) and the National Natural Science Foundation of China (Nos. 11421505, 11475244, and 11175231).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Fang, DQ. & Li, C. Study on the performance of a large-size CsI detector for high energy γ-rays. NUCL SCI TECH 29, 7 (2018). https://doi.org/10.1007/s41365-017-0345-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0345-1

Keywords

Navigation