Skip to main content
Log in

Synergistic responses of NHX, AKT1, and SOS1 in the control of Na+ homeostasis in sweet sorghum mutants induced by 12C6+-ion irradiation

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Sweet sorghum mutants induced by 12C6+-ion irradiation were planted under different soil salinity conditions to investigate the mechanisms maintaining the transport and spatial distribution of Na+. The functions of the synergistic responses of NHX, AKT1, and SOS1 related to Na+ accumulation were investigated in control (KFJT-CK) sorghum and KF1210-3 and KF1210-4 mutants. The results indicated that the NHX, AKT1, and SOS1 proteins in sweet sorghum are mainly involved in the transport, exclusion, and spatial distribution of Na+, respectively. In addition to physiological parameters, we also measured the expression levels of NHX, AKT1, and SOS1 genes. The experimental results indicated that 150 mM NaCl induced marked increases in the transcripts of NHX and SOS1 after 8 and 12 h in the KF1210-3, KF1210-4, and KFJT-CK cultivars. In contrast, however, a decrease in AKT1 was observed. On the basis of our results, we propose a model in which cooperation among NHX, AKT1, and SOS1 facilitates Na+ homeostasis in sweet sorghum in response to an increase in salt concentration. Accordingly, study of the regulatory mechanisms in sweet sorghum generated by carbon ion irradiation is essential for the selection of salt-tolerant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Ravisankar, A. Rajalakshmi, P. Eswaran et al., Radioactivity levels in soil of salt field area, Kelambakkam, Tamilnadu, India. Nucl. Sci. Tech. 18, 372–375 (2007). https://doi.org/10.1016/S1001-8042(08)60011-1

    Article  Google Scholar 

  2. I. Szabolcs, Soils and salinization, in Handbook of Plant and Crop Stress, ed. by M. Pessarakali (Marcel Dekker, New York, 1994), pp. 3–11

    Google Scholar 

  3. R. Munns, S. Husain, A.R. Rivelli et al., Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247, 93–105 (2002). https://doi.org/10.1023/A:1021119414799

    Article  Google Scholar 

  4. R. Munns, M. Tester, Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008). https://doi.org/10.1371/journal.pone.0023776

    Article  Google Scholar 

  5. J.L. Zhang, T.J. Flowers, S.M. Wang, Differentiation of low-affinity Na+ uptake pathways and kinetics of the effects of K+ on Na+ uptake in the halophyte Suaeda maritima. Plant Soil 368, 629–640 (2013). https://doi.org/10.1007/s11104-012-1552-5

    Article  Google Scholar 

  6. J.L. Zhang, T.J. Flowers, S.M. Wang, Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326, 45–60 (2010). https://doi.org/10.1007/s11104-009-0076-0

    Article  Google Scholar 

  7. H.J. Kronzucker, D.T. Britto, Sodium transport in plants: a critical review. New Phytol. 189, 54–81 (2011). https://doi.org/10.1111/j.1469-8137.2010.03540.x

    Article  Google Scholar 

  8. D. Janz, A. Polle, Harnessing salt for woody biomass production. Tree Physiol. 32, 1–3 (2012). https://doi.org/10.1093/treephys/tpr127

    Article  Google Scholar 

  9. S. Shabala, Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann. Bot. 112, 1209–1221 (2013). https://doi.org/10.1093/aob/mct205

    Article  Google Scholar 

  10. L. Zeng, T.R. Kwon, X. Liu et al., Genetic diversity analyzed by microsatellite markers among rice (Oryza sativa L.) genotypes with different adaptations to saline soils. Plant Sci. 166, 1275–1285 (2004). https://doi.org/10.1016/j.plantsci.2004.01.005

    Article  Google Scholar 

  11. L. Zeng, Exploration of relationships between physiological parameters and growth performance of rice (Oryza sativa L.) seedlings under salinity stress using multivariate analysis. Plant Soil 268, 51–59 (2005). https://doi.org/10.1007/s11104-004-0180-0

    Article  Google Scholar 

  12. X.C. Dong, W.J. Li, Evaluation of KTJT-1, an early-maturity mutant of sweet sorghum acquired by carbon ions irradiation. Nucl. Sci. Tech. 25, 020305 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.020305

    Google Scholar 

  13. X.C. Dong, W.J. Li, The influence of carbon ion irradiation on sweet sorghum seeds. Nucl. Instrum. Methods B 266, 123–126 (2008). https://doi.org/10.1016/j.nimb.2007.10.025

    Article  Google Scholar 

  14. X.C. Dong, W.J. Li, Biological features of an early-maturity mutant of sweet sorghum induced by carbon ions irradiation and its genetic polymorphism. Adv. Space Res. 50, 496–501 (2012). https://doi.org/10.1016/j.asr.2012.04.028

    Article  Google Scholar 

  15. W.T. Gu, X.C. Dong, Physiological property and yield of the sweet sorghum mutants induced by heavy ion irradiation. Nucl. Sci. Tech. 27, 88 (2016). https://doi.org/10.1007/s41365-016-0086-6

    Article  Google Scholar 

  16. W. Hu, J.H. Chen, W.J. Li, Mutant breeding of Aspergillus niger irradiated by 12C(6+) for hyper citric acid. Nucl. Sci. Tech. 25, 020302 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.020302

    Google Scholar 

  17. T. Mitsumasa, K. Takuji, Yield of OH radicals in water under heavy ion irradiation. Dependence on mass, specific energy, and elapsed time. Nucl. Sci. Tech. 18, 35–38 (2007). https://doi.org/10.1016/S1001-8042(07)60015-3

    Article  Google Scholar 

  18. L.B. Zhou, W.J. Li, S. Ma et al., Effects of ion beam irradiation on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta. Nucl. Instrum. Methods B 244, 349–353 (2006). https://doi.org/10.1016/j.nimb.2005.10.034

    Article  Google Scholar 

  19. L. Yang, Z. Hong, L.W. Zang, Evaluation of sex specificity on oxidative stress induced in lungs of mice irradiated by 12C(6+) ions. Nucl. Sci. Tech. 19, 17–21 (2008). https://doi.org/10.1016/S1001-8042(08)60016-0

    Article  Google Scholar 

  20. H. Yuan, Q. Ma, G. Wu, S. Wang, ZxNHX controls Na1 and K1 homeostasis at the whole-plant level in Zygophyllum xanthoxylum through feedback regulation of the expression of genes involved in their transport. Ann. Bot. 11, 1–13 (2014). https://doi.org/10.1093/aob/mcu177

    Google Scholar 

  21. M.P. Apse, J.B. Sottosanto, E. Blumwald, Vacuolarcation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J. 36, 229–239 (2003). https://doi.org/10.1046/j.1365-313X.2003.01871.x

    Article  Google Scholar 

  22. A.K. Bao, Y.W. Wang, J.J. Xi et al., Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation. Funct. Plant Biol. 41, 203–214 (2014). https://doi.org/10.1007/s11104-016-2809-1

    Article  Google Scholar 

  23. F. Brini, M. Hanin, I. Mezghani et al., Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J. Exp. Bot. 58, 301–308 (2007). https://doi.org/10.1093/jxb/erl251

    Article  Google Scholar 

  24. G. Wu, J. Xi, Q. Wang et al., The ZxNHX gene encoding tonoplast Na+/H+ antiporter fromthe xerophyte Zygophyllum xanthoxylum plays important roles in response to salt and drought. J. Plant Physiol. 168, 758–767 (2011). https://doi.org/10.1016/j.jplph.2010.10.015

    Article  Google Scholar 

  25. W. Sintho, S. Liu, T. Tetsuo, Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep. 29, 865–874 (2010). https://doi.org/10.1007/s00299-010-0872-2

    Article  Google Scholar 

  26. H. Chokri, D. Ahmed, A. Chedly, Potassium deficiency in plants: effects and signaling cascades. Acta Physiol. Plant. 36, 1055–1070 (2014). https://doi.org/10.1007/s11738-014-1491-2

    Article  Google Scholar 

  27. R. Kaddour, N. Nasri, S. Mrah et al., Comparative effect of potassium on K and Na uptake and transport in two accessions of Arabidopsis thaliana during salinity stress. C R Biol. 332, 784–794 (2009). https://doi.org/10.1016/j.crvi.2009.05.003

    Article  Google Scholar 

  28. Q. Wang, C. Guan, S. Wang, Coordination of AtHKT1;1 and AtSOS1 facilitates Na+ and K+ homeostasis in Arabidopsis thaliana under salt stress. J. Plant Biol. 57, 282–290 (2014). https://doi.org/10.1007/s12374-014-0222-y

    Article  Google Scholar 

  29. H. Shi, F.J. Quintero, J.M. Pardo et al., The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14, 465–477 (2002). https://doi.org/10.1105/tpc.010371

    Article  Google Scholar 

  30. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2–DDCT method. Methods 25, 402–408 (2001). https://doi.org/10.1371/journal

    Article  Google Scholar 

  31. F. Zhang, H. Ya, J. Li et al., Apoptosis and necrosis of HeLa cells in response to low-energy ion radiation. Nucl. Sci. Tech. 17, 222–226 (2006). https://doi.org/10.1016/S1001-8042(06)60041-9

    Article  Google Scholar 

  32. L. Zhang, H. Zhang, X. Zhang et al., Assessment of biological changes in wheat seedlings induced by 12C6+-ion irradiation. Nucl. Sci. Tech. 19, 138–141 (2008). https://doi.org/10.1016/S1001-8042(08)60039-1

    Article  Google Scholar 

  33. T. Horie, F. Hauser, J. Schroeder, HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci. 14, 660–668 (2009). https://doi.org/10.1016/j.tplants.2009.08.009

    Article  Google Scholar 

  34. V.I. Adolf, S.E. Jacobsen, S. Shabala, Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ. Exp. Bot. 92, 43–54 (2013). https://doi.org/10.1016/j.envexpbot.2012.07.004

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the operators at the HIRFL complex for supplying the carbon ion beams.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-Cun Dong or Wen-Jian Li.

Additional information

This work was supported by the Science and Technology Service Network Initiative (STS) program of the Chinese Academy of Sciences (CAS) (KFJ-EW-STS-086), the National Natural Science Foundation of China (No. 11275171), the CAS “Light of West China” Program (Nos. 29Y506020 and 29Y406020), and the Youth Innovation Promotion Association of CAS (No. 2015337).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, WT., Zhou, LB., Liu, RY. et al. Synergistic responses of NHX, AKT1, and SOS1 in the control of Na+ homeostasis in sweet sorghum mutants induced by 12C6+-ion irradiation. NUCL SCI TECH 29, 10 (2018). https://doi.org/10.1007/s41365-017-0341-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0341-5

Keywords

Navigation