Advertisement

Natural orbital description of the halo nucleus 6He

  • Chrysovalantis Constantinou
  • Mark A. Caprio
  • James P. Vary
  • Pieter Maris
Article

Abstract

Ab initio calculations of nuclei face the challenge of simultaneously describing the strong short-range internucleon correlations and the long-range properties of weakly bound halo nucleons. Natural orbitals, which diagonalize the one-body density matrix, provide a basis which is better matched to the physical structure of the many-body wave function. We demonstrate that the use of natural orbitals significantly improves convergence for ab initio no-core configuration interaction calculations of the neutron halo nucleus 6He, relative to the traditional oscillator basis.

Keywords

Neutron halo nucleus 6He Nuclear structure Nuclear theory 

Notes

Acknowledgements

We thank G. Hupin for valuable discussions on the formulation of the nuclear natural orbital problem and M. A. McNanna for carrying out informative preliminary studies in one dimension.

References

  1. 1.
    S.C. Pieper, R.B. Wiringa, J. Carlson, Quantum Monte Carlo calculations of excited states in A = 6–8 nuclei. Phys. Rev. C 70, 054325 (2004).  https://doi.org/10.1103/PhysRevC.70.054325 CrossRefGoogle Scholar
  2. 2.
    T. Neff, H. Feldmeier, Cluster structures within fermionic molecular dynamics. Nucl. Phys. A 738, 357–361 (2004).  https://doi.org/10.1016/j.nuclphysa.2004.04.061 CrossRefGoogle Scholar
  3. 3.
    G. Hagen, D.J. Dean, M. Hjorth-Jensen et al., Benchmark calculations for \(^3\)H, \(^4\)He, \(^{16}\)O, and \(^{40}\)Ca with ab initio coupled-cluster theory. Phys. Rev. C 76, 044305 (2007).  https://doi.org/10.1103/PhysRevC.76.044305 CrossRefGoogle Scholar
  4. 4.
    S. Quaglioni, P. Navrátil, Ab initio many-body calculations of nucleon–nucleus scattering. Phys. Rev. C 79, 044606 (2009).  https://doi.org/10.1103/PhysRevC.79.044606 CrossRefGoogle Scholar
  5. 5.
    S. Bacca, N. Barnea, A. Schwenk, Matter and charge radius of \(^6\)He in the hyperspherical-harmonics approach. Phys. Rev. C 86, 034321 (2012).  https://doi.org/10.1103/PhysRevC.86.034321 CrossRefGoogle Scholar
  6. 6.
    N. Shimizu, T. Abe, Y. Tsunoda et al., New-generation Monte Carlo shell model for the K computer era. Prog. Theor. Exp. Phys. 2012, 01A205 (2012).  https://doi.org/10.1093/ptep/pts012 CrossRefGoogle Scholar
  7. 7.
    T. Dytrych, K.D. Launey, J.P. Draayer et al., Collective modes in light nuclei from first principles. Phys. Rev. Lett. 111, 252501 (2013).  https://doi.org/10.1103/PhysRevLett.111.252501 CrossRefGoogle Scholar
  8. 8.
    B.R. Barrett, P. Navrátil, J.P. Vary, Ab initio no core shell model. Prog. Part. Nucl. Phys. 69, 131–181 (2013).  https://doi.org/10.1016/j.ppnp.2012.10.003 CrossRefGoogle Scholar
  9. 9.
    S. Baroni, P. Navrátil, S. Quaglioni, Unified ab initio approach to bound and unbound states: no-core shell model with continuum and its application to \(^{7}\)He. Phys. Rev. C 87, 034326 (2013).  https://doi.org/10.1103/PhysRevC.87.034326 CrossRefGoogle Scholar
  10. 10.
    R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Accurate nucleon–nucleon potential with charge-independence breaking. Phys. Rev. C 51, 38 (1995).  https://doi.org/10.1103/PhysRevC.51.38 CrossRefGoogle Scholar
  11. 11.
    D.R. Entem, R. Machleidt, Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001(R) (2003).  https://doi.org/10.1103/PhysRevC.68.041001 CrossRefGoogle Scholar
  12. 12.
    A.M. Shirokov, J.P. Vary, A.I. Mazur et al., Realistic nuclear Hamiltonian: ab exitu approach. Phys. Lett. B 644, 33–37 (2007).  https://doi.org/10.1016/j.physletb.2006.10.066 CrossRefGoogle Scholar
  13. 13.
    E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773 (2009).  https://doi.org/10.1103/RevModPhys.81.1773 CrossRefGoogle Scholar
  14. 14.
    M. Freer, The clustered nucleus–cluster structures in stable and unstable nuclei. Rep. Prog. Phys. 70, 2149–2210 (2007).  https://doi.org/10.1088/0034-4885/70/12/R03 CrossRefGoogle Scholar
  15. 15.
    B. Jonson, Light dripline nuclei. Phys. Rep. 389, 1–59 (2004).  https://doi.org/10.1016/j.physrep.2003.07.004 CrossRefGoogle Scholar
  16. 16.
    I. Tanihata, H. Savajols, R. Kanungo, Recent experimental progress in nuclear halo structure studies. Prog. Part. Nucl. Phys. 68, 215–313 (2013).  https://doi.org/10.1016/j.ppnp.2012.07.001 CrossRefGoogle Scholar
  17. 17.
    P.-O. Löwdin, Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97, 1474 (1955).  https://doi.org/10.1103/PhysRev.97.1474 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    H. Shull, P.-O. Löwdin, Natural spin orbitals for helium. J. Chem. Phys. 23, 1565 (1955).  https://doi.org/10.1063/1.1742383 CrossRefGoogle Scholar
  19. 19.
    P.-O. Löwdin, H. Shull, Natural orbitals in the quantum theory of two-electron systems. Phys. Rev. 101, 1730 (1956).  https://doi.org/10.1103/PhysRev.101.1730 CrossRefMATHGoogle Scholar
  20. 20.
    E.R. Davidson, Properties and uses of natural orbitals. Rev. Mod. Phys. 44, 451 (1972).  https://doi.org/10.1103/RevModPhys.44.451 CrossRefGoogle Scholar
  21. 21.
    C. Mahaux, R. Sartor, Single-particle motion in nuclei. Adv. Nucl. Phys. 20, 1–223 (1991).  https://doi.org/10.1007/978-1-4613-9910-0_1 Google Scholar
  22. 22.
    M.V. Stoitsov, A.N. Antonov, S.S. Dimitrova, Natural orbital representation and short-range correlations in nuclei. Phys. Rev. C 48, 74 (1993).  https://doi.org/10.1103/PhysRevC.48.74 CrossRefGoogle Scholar
  23. 23.
    T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electron-Structure Theory (Wiley, Chichester, 2000)Google Scholar
  24. 24.
    A.E. McCoy, M.A. Caprio, Algebraic evaluation of matrix elements in the Laguerre function basis. J. Math. Phys. 57, 021708 (2016).  https://doi.org/10.1063/1.4941327 MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    M. Moshinsky, Y.F. Smirnov, The Harmonic Oscillator in Modern Physics (Harwood Academic Publishers, Amsterdam, 1996)MATHGoogle Scholar
  26. 26.
    J. Suhonen, From Nucleons to Nucleus (Springer, Berlin, 2007)CrossRefMATHGoogle Scholar
  27. 27.
    R.J. Furnstahl, G. Hagen, T. Papenbrock, Corrections to nuclear energies and radii in finite oscillator spaces. Phys. Rev. C 86, 031301(R) (2012).  https://doi.org/10.1103/PhysRevC.86.031301 CrossRefGoogle Scholar
  28. 28.
    S.N. More, A. Ekström, R.J. Furnstahl et al., Universal properties of infrared oscillator basis extrapolations. Phys. Rev. C 87, 044326 (2013).  https://doi.org/10.1103/PhysRevC.87.044326 CrossRefGoogle Scholar
  29. 29.
    P. Maris, J.P. Vary, A.M. Shirokov, Ab initio no-core full configuration calculations of light nuclei. Phys. Rev. C 79, 014308 (2009).  https://doi.org/10.1103/PhysRevC.79.014308 CrossRefGoogle Scholar
  30. 30.
    P. Maris, J.P. Vary, Ab initio nuclear structure calculations of p-shell nuclei with JISP16. Int. J. Mod. Phys. E 22, 1330016 (2013).  https://doi.org/10.1142/S0218301313300166 CrossRefGoogle Scholar
  31. 31.
    M.A. Caprio, P. Maris, J.P. Vary et al., Collective rotation from ab initio theory. Int. J. Mod. Phys. E 24, 1541002 (2015).  https://doi.org/10.1142/S0218301315410025 CrossRefGoogle Scholar
  32. 32.
    L. Schäfer, H.A. Weidenmüller, Self-consistency in the application of Brueckner’s method to doubly-closed-shell nuclei. Nucl. Phys. A 174, 1–25 (1971).  https://doi.org/10.1016/0375-9474(71)90999-7 CrossRefGoogle Scholar
  33. 33.
    M.A. Caprio, P. Maris, J.P. Vary, Coulomb–Sturmian basis for the nuclear many-body problem. Phys. Rev. C 86, 034312 (2012).  https://doi.org/10.1103/PhysRevC.86.034312 CrossRefGoogle Scholar
  34. 34.
    G. Hagen, M. Hjorth-Jensen, N. Michel, Gamow shell model and realistic nucleon–nucleon interactions. Phys. Rev. C 73, 064307 (2006).  https://doi.org/10.1103/PhysRevC.73.064307 CrossRefGoogle Scholar
  35. 35.
    M.A. Caprio, P. Maris, J.P. Vary, Halo nuclei \(^{6}\)He and \(^{8}\)He with the Coulomb–Sturmian basis. Phys. Rev. C 90, 034305 (2014).  https://doi.org/10.1103/PhysRevC.90.034305 CrossRefGoogle Scholar
  36. 36.
    D.R. Tilley, C.M. Cheves, J.L. Godwin et al., Energy levels of light nuclei \(A=5, 6, 7\). Nucl. Phys. A 708, 3–163 (2002).  https://doi.org/10.1016/S0375-9474(02)00597-3 CrossRefGoogle Scholar
  37. 37.
    J.L. Friar, J. Martorell, D.W.L. Sprung, Nuclear sizes and the isotope shift. Phys. Rev. A 56, 4579 (1997).  https://doi.org/10.1103/PhysRevA.56.4579 CrossRefGoogle Scholar
  38. 38.
    L.-B. Wang, P. Mueller, K. Bailey et al., Laser spectroscopic determination of the \(^{6}\)He nuclear charge radius. Phys. Rev. Lett. 93, 142501 (2004).  https://doi.org/10.1103/PhysRevLett.93.142501 CrossRefGoogle Scholar
  39. 39.
    M. Brodeur, T. Brunner, C. Champagne et al., First direct mass measurement of the two-neutron halo nucleus \(^6\)He and improved mass for the four-neutron halo \(^8\)He. Phys. Rev. Lett. 108, 052504 (2012).  https://doi.org/10.1103/PhysRevLett.108.052504 CrossRefGoogle Scholar
  40. 40.
    Z.-T. Lu, P. Mueller, G.W.F. Drake et al., Colloquium: laser probing of neutron-rich nuclei in light atoms. Rev. Mod. Phys. 85, 1383 (2013).  https://doi.org/10.1103/RevModPhys.85.1383 CrossRefGoogle Scholar
  41. 41.
    P. Maris, M. Sosonkina, J.P. Vary, Scaling of ab-initio nuclear physics calculations on multicore computer architectures. Proc. Comput. Sci. 1, 97–106 (2010).  https://doi.org/10.1016/j.procs.2010.04.012 CrossRefGoogle Scholar
  42. 42.
    H.M. Aktulga, C. Yang, E.G. Ng et al., Improving the scalability of a symmetric iterative eigensolver for multi-core platforms. Concurr. Comput. Pract. Exp. 26, 2631–2651 (2013).  https://doi.org/10.1002/cpe.3129 CrossRefGoogle Scholar
  43. 43.
    S.K. Bogner, R.J. Furnstahl, P. Maris et al., Convergence in the no-core shell model with low-momentum two-nucleon interactions. Nucl. Phys. A 801, 21–42 (2008).  https://doi.org/10.1016/j.nuclphysa.2007.12.008 CrossRefGoogle Scholar
  44. 44.
    S.A. Coon, M.I. Avetian, M.K.G. Kruse et al., Convergence properties of ab initio calculations of light nuclei in a harmonic oscillator basis. Phys. Rev. C 86, 054002 (2012).  https://doi.org/10.1103/PhysRevC.86.054002 CrossRefGoogle Scholar
  45. 45.
    R.J. Furnstahl, S.N. More, T. Papenbrock, Systematic expansion for infrared oscillator basis extrapolations. Phys. Rev. C 89, 044301 (2014).  https://doi.org/10.1103/PhysRevC.89.044301 CrossRefGoogle Scholar
  46. 46.
    R.J. Furnstahl, G. Hagen, T. Papenbrock et al., Infrared extrapolations for atomic nuclei. J. Phys. G 42, 034032 (2015).  https://doi.org/10.1088/0954-3899/42/3/034032 CrossRefGoogle Scholar
  47. 47.
    K.A. Wendt, C. Forssén, T. Papenbrock et al., Infrared length scale and extrapolations for the no-core shell model. Phys. Rev. C 91, 061301(R) (2015).  https://doi.org/10.1103/PhysRevC.91.061301 CrossRefGoogle Scholar
  48. 48.
    J.P. Vary, P. Maris, E. Ng et al., Ab initio nuclear structure—the large sparse matrix eigenvalue problem. J. Phys. Conf. Ser. 180, 012083 (2009).  https://doi.org/10.1088/1742-6596/180/1/012083 CrossRefGoogle Scholar
  49. 49.
    C.F. Bender, E.R. Davidson, A natural orbital based energy calculation for helium hydride and lithium hydride. J. Phys. Chem. 70, 2675–2685 (1966).  https://doi.org/10.1021/j100880a036 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Chrysovalantis Constantinou
    • 1
    • 2
  • Mark A. Caprio
    • 2
  • James P. Vary
    • 3
  • Pieter Maris
    • 3
  1. 1.Center for Theoretical Physics, Sloane Physics LaboratoryYale UniversityNew HavenUSA
  2. 2.Department of PhysicsUniversity of Notre DameNotre DameUSA
  3. 3.Department of Physics and AstronomyIowa State UniversityAmesUSA

Personalised recommendations