An assessment of k-ε turbulence models for gas distribution analysis

Abstract

This paper presents the gas distribution analysis by injecting air fountain into the containment and simulations with the HYDRAGON code. Turbulence models of standard k-ε (SKE), re-normalization group k-ε (RNG) and a realizable k-ε (RLZ) are used to assess the effects on the gas distribution analysis during a severe accident in a nuclear power plant. By comparing with experimental data, the simulation results of the RNG and SKE turbulence models agree well with the experimental data on the prediction of dimensionless density distributions. The results illustrate that the turbulence model choice had a small effect on the simulation results, particularly the region near to the air fountain source.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    D.C. Visser, M. Houkema, N.B. Siccama et al., Validation of a FLUENT CFD model for hydrogen distribution in a containment. Nucl. Eng. Des. 245, 161 (2012). doi:10.1016/j.nucengdes.2012.01.025

    Article  Google Scholar 

  2. 2.

    IAEA, Mitigation of hydrogen hazard in severe accident in nuclear power plants, International Atomic Energy Agency, Vienna (2011). IAEA TECDOC No. 1661

  3. 3.

    J. Zhang, M.A. Delichatsios, A.G. Venetsanos, Numerical studies of dispersion and flammable volume of hydrogen in enclosures. Int. J. Hydrog. Energy 35(12), 6431 (2010). doi:10.1016/j.ijhydene.2010.03.107

    Article  Google Scholar 

  4. 4.

    J. Deng, X. Cao, Hydrogen and steam distribution following a small-break LOCA in large dry containment. Nucl. Sci. Tech. 18(3), 181 (2007). doi:10.1016/S1001-8042(07)60043-8

    Article  Google Scholar 

  5. 5.

    Z.J. Xiao, S.Z. Qiu, W.B. Zhuo et al., The development and verification of thermal-hydraulic code on passive residual heat removal system of Chinese advanced PWR. Nucl. Sci. Tech. 17(5), 301 (2006). doi:10.1016/S1001-8042(06)60057-2

    Article  Google Scholar 

  6. 6.

    T.F. Kanzleiter, K.O. Fischer, Multi-Compartment hydrogen deflagration experiments and model development. Nucl. Eng. Des. 146, 417 (1994). doi:10.1016/0029-5493(94)90347-6

    Article  Google Scholar 

  7. 7.

    R.E. Henry, C.Y. Paik, M.G. Plys, MAAP4-modular accident analysis program for LWR plants code manual, FAI (1994)

  8. 8.

    H.A. Olvera, A.R. Choudhuri, Numerical simulation of hydrogen dispersion in the vicinity of a cubical building in stable stratified atmospheres. Int. J. Hydrog. Energy 31(15), 2356 (2006). doi:10.1016/j.ijhydene.2007.08.028

    Article  Google Scholar 

  9. 9.

    A.G. Venetsanos, T. Huld, P. Adams et al., Source, dispersion and combustion modelling of an accidental release of hydrogen in an urban environment. J. Haz. Mater. 105(1), 1 (2003). doi:10.1016/j.jhazmat.2003.05.001

    Article  Google Scholar 

  10. 10.

    Z. Cheng, V. Agranat, A.V. Tchouvelev et al., PRD hydrogen release and dispersion, a comparison of CFD results obtained from using ideal and real gas law properties. First international conference on hydrogen safety (Pisa, Italy, 8–10 Sept 2005)

  11. 11.

    H. Wilkening, D. Baraldi, CFD modelling of accidental hydrogen release from pipelines. Int. J. Hydrog. Energy 32(13), 2206 (2007). doi:10.1016/j.ijhydene.2007.04.022

    Article  Google Scholar 

  12. 12.

    R. Fotis, S. Sklavounos, Evaluation of hazards associated with hydrogen storage facilities. Int. J. Hydrog. Energy 30(13), 1501 (2005). doi:10.1016/j.ijhydene.2005.06.004

    Google Scholar 

  13. 13.

    J. Kim, S.W. Hong, S.B. Kim et al., Three-dimensional behaviors of the hydrogen and steam in the APR1400 containment during a hypothetical loss of feed water accident. Ann. Nucl. Energy 34, 992 (2007). doi:10.1016/j.anucene.2007.05.003

    Article  Google Scholar 

  14. 14.

    P. Middha, O.R. Hansen, CFD simulation study to investigate the risk from hydrogen vehicles in tunnels. Int. J. Hydrog. Energy 34(14), 5875 (2009). doi:10.1016/j.ijhydene.2009.02.004

    Article  Google Scholar 

  15. 15.

    P. Middha, O.R. Hansen, I.E. Storvik, Validation of CFD-model for hydrogen dispersion. J. Haz. Mater. 22(6), 1034 (2009). doi:10.1016/j.jlp.2009.07.020

    Google Scholar 

  16. 16.

    P. Middha, O.R. Hansen, J. Grune et al., CFD calculations of gas leak dispersion and subsequent gas explosions: validation against ignited impinging hydrogen jet experiments. J. Haz. Mater. 179(1), 84 (2010). doi:10.1016/j.jhazmat.2010.02.061

    Article  Google Scholar 

  17. 17.

    M. Heitsch, R. Huhtanen, Z. Techy et al., CFD evaluation of hydrogen risk mitigation measures in a VVER-440/213 containment. Nucl. Eng. Des. 240(2), 385 (2010). doi:10.1016/j.nucengdes.2008.07.022

    Article  Google Scholar 

  18. 18.

    D.M. Prabhudharwadkar, K.N. Iyer, N. Mohan et al., Simulation of hydrogen distribution in an Indian nuclear reactor containment. Nucl. Eng. Des. 241, 832 (2011). doi:10.1016/j.nucengdes.2010.11.012

    Article  Google Scholar 

  19. 19.

    D. Baraldi, A. Kotchourko, A. Lelyakin, An inter-comparison exercise on CFD model capabilities to simulate hydrogen deflagrations in a tunnel. Int. J. Hydrog. Energy 34(18), 7862 (2009). doi:10.1016/j.ijhydene.2009.06.055

    Article  Google Scholar 

  20. 20.

    J. Xiao, J.R. Travis, How critical is turbulence modeling in gas distribution simulations of large-scale complex nuclear reactor containments? Ann. Nucl. Energy 56, 227 (2013). doi:10.1016/j.anucene.2013.01.016

    Article  Google Scholar 

  21. 21.

    E. Deri, M. Bucci, E. Studer et al., Analytical and computational analysis of turbulent buoyant jets in the containment atmosphere, in Proceedings of the 16th International Conference on Nuclear Engineering, ICONE16-48237: 689698 (2008). doi:10.1115/ICONE16-48237

  22. 22.

    A.A. Abdalla, J. Yu, M. Alrwashdeh, Application of some turbulence models to simulate buoyancy-driven flow, in Proceedings of the 2014 22nd International Conference on Nuclear Engineering (2014). doi:10.1115/ICONE22-30060

  23. 23.

    M. Saeed, J. Yu, B. Hou et al., Numerical distribution of hydrogen inside a compartment using HYDRAGON code, in Proceedings of the 2016 24th International Conference on Nuclear Engineering, ICONE24-60610 (2016). doi:10.1115/ICONE24-60610

  24. 24.

    E. Deri, B. Cariteau, D. Abdo, Air fountain in the erosion of gaseous stratification. Int. J. Heat Fluid Flow 31, 935 (2010). doi:10.1016/j.ijheatfluidflow.2010.05.003

    Article  Google Scholar 

  25. 25.

    V. Agarant, Z. Cheng. A. Tchouvelev. CFD modeling of hydrogen releases and dispersion in hydrogen energy station, in Proceeding of WHEC-15, Yokohama (2004)

  26. 26.

    D.C. Wilcox, Formulation of the kω turbulence model revisited. AIAA J. 46(11), 2823–2838 (2008). doi:10.2514/6.2007-1408

    Article  Google Scholar 

  27. 27.

    Z.U.A. Warsi, Fluid dynamics: theoretical and computational approaches, 3rd edn. (CRC press, 2006). ISBN 9780849333972 - CAT# 3397

  28. 28.

    J.P.S. Sanders, B. Sarh, H. Gokalp, Variable density effects in axisymmetric isothermal turbulence jet: a comparison between a first and second order turbulence model. Int. J. Heat Mass Transf. 40(4), 823 (1997). doi:10.1016/0017-9310(96)00151-2

    Article  MATH  Google Scholar 

  29. 29.

    M. Latif, C. Masson, T. Stathopoulos et al., Comparison of various types of k-ε models for pollutant emissions around a two-building configuration. J. Wind Eng. Ind. Aerodyn. 115, 9–21 (2013). doi:10.1016/j.jweia.2013.01.001

    Article  Google Scholar 

  30. 30.

    Z. Xie, Y. Yang, H. Gu et al., Numerical analysis of turbulent mixed convection air flow in inclined plane channel with k-ɛ type turbulence model. J Nucl. Sci. Techol. 19(2), 121 (2008). doi:10.1016/S1001-8042(08)60036-6

    Article  Google Scholar 

  31. 31.

    W.P. Jones, B.E. Lanuder, The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 15(2), 301 (1972). doi:10.1016/0017-9310(72)90076-2

    Article  Google Scholar 

  32. 32.

    G. Biswas, V. Eswaran, Turbulent Flow, Fundamental, Experiments and Modeling (England) (Alpha Science International Ltd, Pangbourne, 2002)

    Google Scholar 

  33. 33.

    M. Andreani, R. Kapulla, R. Zboray, Gas Stratification break-up by a vertical jet: simulations using the GOTHIC Code. Nucl. Eng. Des. 249, 71 (2012). doi:10.1016/j.nucengdes.2011.06.004

    Article  Google Scholar 

  34. 34.

    F.S. Lien, E. Yee, H. Ji et al., Progress and challenges in the development of physically-based numerical models for prediction of flow and contaminant dispersion in the urban environment. Int. J. Comput. Fluid Dyn. 20, 323 (2006). doi:10.1080/10618560600898528

    Article  MATH  Google Scholar 

  35. 35.

    V.O. Yakhot, S.A. Orszag, S. Thangam et al., Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A4, 1510 (1992). doi:10.1063/1.858424

    Article  MATH  MathSciNet  Google Scholar 

  36. 36.

    T.H. Shih, W.W. Liou, A. Shabbir et al., A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids 24, 227 (1995). doi:10.1016/0045-7930(94)00032-T

    Article  MATH  Google Scholar 

  37. 37.

    W.P. Jones, B.E. Launder, The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 15, 301 (1995). doi:10.1016/0017-9310(72)90076-2

    Article  Google Scholar 

  38. 38.

    A. Suryan, H.D. Kim, T. Setoguchi, Comparative study of turbulence models performance for refueling of compressed hydrogen tanks. Int. J. Hydrog. Energy 38, 9562 (2013). doi:10.1016/j.ijhydene.2012.07.055

    Article  Google Scholar 

  39. 39.

    S.M. Tauseef, D. Rashtchian, S.A. Abbasi, CFD-based simulation of dense gas dispersion in presence of obstacles. J. Loss Prev. Process Ind. 24(4), 371 (2011). doi:10.1016/j.jlp.2011.01.014

    Article  Google Scholar 

  40. 40.

    T.R. Marrero, E.A. Mason, Gaseous diffusion coefficients. J. Phys. Chem. Ref. Data 1, 3 (2009). doi:10.1063/1.3253094

    Article  Google Scholar 

Download references

Acknowledgements

The authors highly acknowledge the support of the National key Lab of Reactor System Design Technology Chengdu, China. Mr. Muhammad Saeed also acknowledges the Chinese Scholarship Council for the award of Doctoral study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saeed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1125 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saeed, M., Yu, J., Abdalla, A.A.A. et al. An assessment of k-ε turbulence models for gas distribution analysis. NUCL SCI TECH 28, 146 (2017). https://doi.org/10.1007/s41365-017-0304-x

Download citation

Keywords

  • Turbulence model
  • Hydrogen combustion
  • Nuclear power
  • Plant accident
  • HYDRAGON
  • Air fountain