Advertisement

Numerical and experimental analysis of AC loss for CFETR CS model coil

  • Wei Zhou
  • Xin-Yu Fang
  • Jin Fang
  • Yan-Chao Liu
  • Bo Liu
Article
  • 56 Downloads

Abstract

The central solenoid (CS) is an important component of China Fusion Engineering Test Reactor, for producing, forming and stabilizing plasma in the superconducting tokamak. It is a complicated work to design and manufacture the large superconducting CS magnet, so it is meaningful to design a central solenoid model coil (CSMC) and analyze its electromagnetic properties in advance. In this paper, the structure, design parameters and magnetic field distribution of the CS model coil are discussed. The peak power of radial and axial turn conductors and time bucket loss are analyzed by using piecewise-linear method. The CSMC AC loss with different Nb3Sn CICCs and AC loss of ITER CS coil are compared. The special electrometric method to measure AC loss of the CS model coil for future reference is presented.

Keywords

CFETR CS model coil AC loss Experimental system 

Notes

Acknowledgements

The authors are thankful to all the members of CFETR CS model coil design team and ASIPP crew for providing some pictures. We would like to thank Arend Nijhuis from University of Twente and Zhenan Jiang from Victoria University of Wellington for measurement discussion.

References

  1. 1.
    B. Wan, S. Ding, J. Qian et al., Physics design of CFETR: determination of the device engineering parameters. IEEE Trans. Plasma Sci. 42, 495 (2014). doi: 10.1109/TPS.2013.2296939 CrossRefGoogle Scholar
  2. 2.
    Y. Wan, Mission of CFETR. in Proceedings ITER Training Forum Second Workshop MFE Develop. Strategy, Hefei, China, 1 (2012)Google Scholar
  3. 3.
    Y.T. Song, S.T. Wu, J.G. Li et al., Concept design of CFETR Tokamak machine. IEEE Trans. Plasma Sci. 42, 503 (2014). doi: 10.1109/TPS.2014.2299277 CrossRefGoogle Scholar
  4. 4.
    X. Liu, J. Zheng, Z. Luo et al., Conceptual design and analysis of CFETR magnets. in The 25th Symposium on Fusion Engineering (SOFE). IEEE, 1 (2013). doi:  10.1109/SOFE.2013.6635306
  5. 5.
    X.G. Liu, X.W. Wang, D.P. Yin et al., Electromagnetic optimization and preliminary mechanical analysis of the CFETR CS Model Coil. IEEE Trans. Plasma Sci. 44, 1559 (2016). doi: 10.1109/TPS.2016.2521892 CrossRefGoogle Scholar
  6. 6.
    J.G. Qin, T.J. Xue, B. Liu et al., Cabling technology of Nb3Sn conductor for CFETR central solenoid model coil. IEEE Trans. Appl. Supercond. 26, 1 (2016). doi: 10.1109/TASC.2016.2525923 Google Scholar
  7. 7.
    H. Jin, Y. Wu, F. Long et al., Mechanical properties of preliminary designed insulation for CFETR CSMC. IEEE Trans. Appl. Supercond. 26, 1 (2016). doi: 10.1109/TASC.2016.2518490 Google Scholar
  8. 8.
    Y.L. Yang, Y. Wu, B. Liu, A new numerical model for the quench simulation in CFETR CSMC conductor. IEEE Trans. Appl. Supercond. 26, 1 (2016). doi: 10.1109/TASC.2016.2532461 Google Scholar
  9. 9.
    A. Nijhuis, N.H.W. Noordman, O.A. Shevchenko et al., Electromagnetic and mechanical characterization of ITER CS–MC conductors affected by transverse cyclic loading, part 1: coupling current losses. IEEE Trans. Appl. Supercond. 9, 1069 (1999). doi: 10.1109/77.783482 CrossRefGoogle Scholar
  10. 10.
    W. Zhou, X.Y. Fang, J. Fang et al., DC performance and AC loss of cable-in-conduit conductors for International thermonuclear experimental reactor. Nucl. Sci. Tech. 27, 1 (2016). doi: 10.1007/s41365-016-0061-2 CrossRefMathSciNetGoogle Scholar
  11. 11.
    W. Chung, Y. Chu, S. Lee et al., Analysis of the KSTAR central solenoid model coil experiment. IEEE Trans. Appl. Supercond. 17, 1338 (2007). doi: 10.1109/TASC.2007.899989 CrossRefGoogle Scholar
  12. 12.
    Y. Shi, Y. Wu, Q.W. Hao et al., The AC loss evaluation of central solenoid model coil for CFETR. Fusion Eng. Des. 107, 100 (2016). doi: 10.1016/j.fusengdes.2016.03.070 CrossRefGoogle Scholar
  13. 13.
    A. Devred, I. Backbier, D. Bessette et al., Status of ITER conductor development and production. IEEE Trans. Appl. Supercond. 22, 4804909 (2012). doi: 10.1109/TASC.2012.2182980 CrossRefGoogle Scholar
  14. 14.
    B. Liu, Y. Wu, A. Devred et al., Conductor performance of TFCN4 and TFCN5 samples for ITER TF coils. IEEE Trans. Appl. Supercond. 25, 1 (2015). doi: 10.1109/TASC.2014.2376931 Google Scholar
  15. 15.
    D. Bessette, Design of a cable-in-conduit conductor to withstand the 60 000 electromagnetic cycles of the ITER central solenoid. IEEE Trans. Appl. Supercond. 24, 1 (2014). doi: 10.1109/TASC.2013.2282399 CrossRefGoogle Scholar
  16. 16.
    L. Feng, W. Yu, L. Fang et al., Manufacture and acceptance test of the full size ITER PF5 conductor sample. IEEE Trans. Appl. Supercond. 22, 4805404 (2012). doi: 10.1109/TASC.2011.2175432 CrossRefGoogle Scholar
  17. 17.
    F. Gauthier, 15MA CS thermal hydraulic analysis with the SuperMagnet code. in ITER_D_APUB8, v 1.1, pp: 35–36, Aug. 2012Google Scholar
  18. 18.
    A.M. Campbell, A general treatment of losses in multifilamentary superconductors. Cryogenics 22, 3 (1982). doi: 10.1016/0011-2275(82)90015-7 CrossRefGoogle Scholar
  19. 19.
    M.N. Wilson, Superconducting Magnets (Oxford Science Publications, London, 1987), pp. 177–192Google Scholar
  20. 20.
    L. Bottura, B. Bordini, J c (B, T, ε) parameterization for the ITER Nb3Sn production. IEEE Trans. Appl. Supercond. 19, 1521 (2009). doi: 10.1109/TASC.2009.2018278 CrossRefGoogle Scholar
  21. 21.
    L. Bottura, A practical fit for the critical surface of NbTi. IEEE Trans. Appl. Supercond. 10, 2000 (1054). doi: 10.1109/77.828413 Google Scholar
  22. 22.
    B. Xiao, P. Weng, Integrated analysis of the electromagnetical, thermal, fluid flow fields in a Tokamak. Fusion Eng. Des. 81, 1549 (2006). doi: 10.1016/j.fusengdes.2005.10.013 CrossRefGoogle Scholar
  23. 23.
    T. Suwa, Y. Nabara, H. Ozeki et al., Analysis of internal-Tin Nb3Sn conductors for ITER central solenoid. IEEE Trans. Appl. Supercond. 25, 4201704 (2015). doi: 10.1109/TASC.2014.2376990 CrossRefGoogle Scholar
  24. 24.
    Y. Takahashi, K. Matsui, K. Nishii et al., AC loss measurement of 46 kA-13T Nb3Sn conductor for ITER. IEEE Trans. Appl. Supercond. 11, 1546 (2001). doi: 10.1109/77.920071 CrossRefGoogle Scholar
  25. 25.
    Y. Wang, X. Guan, J. Dai, Review of AC loss measuring methods for HTS tape and unit. IEEE Trans. Appl. Supercond. 24, 1 (2014). doi: 10.1109/TASC.2014.2340457 Google Scholar
  26. 26.
    Z. Jiang, N. Amemiya, An experimental method for total AC loss measurement of high T c superconductors. Supercond. Sci. Technol. 17, 371 (2004). doi: 10.1088/0953-2048/17/3/014 CrossRefGoogle Scholar
  27. 27.
    S. Lee, Y. Chu, W.H. Chung et al., AC loss characteristics of the KSTAR CSMC estimated by pulse test. IEEE Trans. Appl. Supercond. 16, 771 (2006). doi: 10.1109/TASC.2006.870541 CrossRefGoogle Scholar
  28. 28.
    W. Zhou, J. Fang, B. Liu et al., AC loss analysis of central solenoid model coil for China fusion engineering test reactor. IEEE Trans. Appl. Supercond. 26, 5900505 (2016). doi: 10.1109/TASC.2016.2580564 Google Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Wei Zhou
    • 1
  • Xin-Yu Fang
    • 2
  • Jin Fang
    • 1
  • Yan-Chao Liu
    • 1
  • Bo Liu
    • 3
  1. 1.School of Electrical EngineeringBeijing Jiaotong UniversityBeijingChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of VictoriaVictoriaCanada
  3. 3.Institute of Plasma PhysicsChinese Academy of SciencesHefeiChina

Personalised recommendations