Advertisement

Discovery of a novel small inhibitor RJ19 targeting to human Hsp90

  • Hui-Ling Cao
  • Kai-Kai Lyu
  • Bin Liu
  • Jian Li
  • Jian-Hua He
Article

Abstract

Heat shock protein 90 (Hsp90) can promote growth and proliferation of cancer cells by helping in folding, conformational maturation, and activation of various client proteins. Therefore, Hsp90 has been paid more attention to as an anticancer drug target. Reported Hsp90 inhibitors have several limitations such as poor solubility, limited bioavailability, and hepatotoxicity. Here, a novel small inhibitor RJ19 has been designed using fragment-based drug discovery and synthesized. Additionally, a crystal structure of Hsp90N–RJ19 was determined by X-ray diffraction (resolution limit, 2.0 Å, PDB code 4L90). The crystal structure of Hsp90N–RJ19 was analyzed in detail and compared with that of native Hsp90N, Hsp90N-ATP, and Hsp90N-GDM, respectively. It was indicated that RJ19 interacted with Hsp90N at the ATP-binding pocket, which suggests that RJ19 may replace nucleotides to bind with Hsp90N to result in chaperone function failure of Hsp90. RJ19, therefore, has emerged as a promising anticancer lead compound. Rearrangement and displacement of L2 Loop in Hsp90N–RJ19 play a key role in the function failure, which also makes the pocket wider and longer facilitating structure modification of RJ19 later. The complex crystal structure and interaction between RJ19 and Hsp90N provide a rational basis for the design and optimization of novel anticancer drugs.

Keywords

Heat shock protein 90 Drug target Inhibitor X-ray diffraction Complex crystal structure 

Supplementary material

41365_2017_300_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1270 kb)

References

  1. 1.
    J. Ren, M. Yang, H.C. Liu et al., Multi-substituted 8-aminoimidazo [1,2-a]pyrazines by Groebke–Blackburn–Bienaymé reaction and their Hsp90 inhibitory activity. Org. Biomol. Chem. 13(5), 1531–1535 (2015). doi: 10.1039/c4ob01865f CrossRefGoogle Scholar
  2. 2.
    H.L. Cao, L.H. Sun, L. Liu et al., Structural consistency analysis of recombinant and wild-type human serum albumin. J. Mol. Struct. 1127, 1–5 (2017). doi: 10.1016/j.molstruc.2016.07.057 CrossRefGoogle Scholar
  3. 3.
    J. Li, F. Shi, D.Q. Chen et al., FS23 binds to the N-terminal domain of human Hsp90: a novel small inhibitor for Hsp90. Nucl. Sci. Tech. 26, 060503 (2015). doi: 10.13538/j.1001-8042/nst.26.060503 Google Scholar
  4. 4.
    C. Prodromou, B. Panaretou, S. Chohan et al., The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO J. 19, 4383–4392 (2000). doi: 10.1093/emboj/19.16.4383 CrossRefGoogle Scholar
  5. 5.
    J. Li, L.H. Sun, C.Y. Xu et al., Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90. Acta Biochim. Biophys. Sin. 44, 300–306 (2012). doi: 10.1093/abbs/gms001 CrossRefGoogle Scholar
  6. 6.
    C.W. Murray, M.L. Verdonkvnd, D.C. Ree, Experiences in fragment-based drug discovery. Trends Pharmacol. Sci. 33, 224–232 (2010). doi: 10.1016/j.tips.2012.02.006 CrossRefGoogle Scholar
  7. 7.
    C.E. Stebbins, A.A. Russo, C. Schneider et al., Crystal structure of an Hsp90–geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89, 239–250 (1997). doi: 10.1016/S0092-8674(00)80203-2 CrossRefGoogle Scholar
  8. 8.
    N. Sung, J. Lee, J.H. Kim et al., Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate. Proc. Natl. Acad. Sci. USA 113, 2952–2957 (2016). doi: 10.1073/pnas.1516167113 CrossRefGoogle Scholar
  9. 9.
    P. Meyer, C. Prodromou, B. Hu et al., Structural and functional analysis of the middle segment of Hsp 90: implications for ATP hydrolysis and client protein and cochaperoneinteractions. Mol. Cell 11, 647–658 (2003). doi: 10.1016/S1097-2765(03)00065-0 CrossRefGoogle Scholar
  10. 10.
    L.H. Galam, M.K. Hadden, Z.Q. Ma et al., High-throughput assay for the identification of Hsp90 inhibitors based on Hsp90-dependent refolding of firefly luciferase. Bioorg. Med. Chem. 15, 1939–1946 (2007). doi: 10.1016/j.bmc.2007.01.004 CrossRefGoogle Scholar
  11. 11.
    J. Li, S. Joann, B. Johannes et al., The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim. Biophys. Acta 1823, 624–635 (2012). doi: 10.1016/j.bbamcr.2011.09.003 CrossRefGoogle Scholar
  12. 12.
    G. Garg, H. Zhao, B.S.J. Blagg et al., Design, synthesis and biological evaluation of alkylamino biphenylamides as Hsp90 C-terminal inhibitors. Bioorg. Med. Chem. 25, 451–457 (2017). doi: 10.1016/j.bmc.2016.11.030 CrossRefGoogle Scholar
  13. 13.
    D. Chen, A. Shen, J. Li et al., Discovery of potent N-(isoxazol-5-yl)amides as HSP90 inhibitors. Eur. J. Med. Chem. 87, 765–781 (2014). doi: 10.1016/j.ejmech.2014.09.065 CrossRefGoogle Scholar
  14. 14.
    C. Zhang, X. Wang, H. Liu et al., Design, synthesis and pharmacological evaluation of 4,5-diarylisoxazols bearing amino acid residues within the 3-amido motif as potent heat shock protein 90 (Hsp90) inhibitors. Eur. J. Med. Chem. 125, 315–326 (2017). doi: 10.1016/j.bbamcr.2011.09.003 CrossRefGoogle Scholar
  15. 15.
    J. Komal, S.O. Ochiana, P.D. Mark et al., Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin. Investig. Drugs 23, 611–628 (2014). doi: 10.1517/13543784.2014.902442 CrossRefGoogle Scholar
  16. 16.
    S. Tukaj, K. Biebe, K. Kleszczynski et al., Topically applied Hsp90 blocker 17-AAG inhibits autoantibody-mediated blister-inducing cutaneous inflammation. J. Invest. Dermatol. 8, 26169–26184 (2016). doi: 10.1016/j.jid.2016.08.032 Google Scholar
  17. 17.
    Z.Z. Huang, X.Q. Zhou, Y.F. He et al., Hyperthermia enhances 17-DMAG efficacy in hepatocellular carcinoma cells with aggravated DNA damage and impaired G2/M transition. Sci. Rep. 6, 38072 (2016). doi: 10.1038/srep38072 CrossRefGoogle Scholar
  18. 18.
    J.R. Sydor, E. Normant, C.S. Pien et al., Development of 17-allylamino-17- demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc. Natl. Acad. Sci. USA 103, 17408–17413 (2006). doi: 10.1073/pnas.0608372103 CrossRefGoogle Scholar
  19. 19.
    W.P. Jencks, On the attribution and additivity of binding energies. Proc. Natl. Acad. Sci. USA 78, 4046–4050 (1981). doi: 10.1073/pnas.78.7.4046 CrossRefGoogle Scholar
  20. 20.
    J. Ren, J. Li, Y. Wang et al., Identification of `ew series of potent diphenol HSP90 inhibitors by fragment merging and structure-based optimization. Bioorg. Med. Chem. Lett. 24, 2525–2529 (2014). doi: 10.1016/j.bmcl.2014.03.100 CrossRefGoogle Scholar
  21. 21.
    Q.S. Wang, F. Yu, S. Huang et al., The macromolecular crystallography beamline of SSRF. Nucl. Sci. Tech. 26, 010102 (2015). doi: 10.13538/j.1001-8042/nst.26.010102 Google Scholar
  22. 22.
    Z. Otwinowski, W. Minor, Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997). doi: 10.1016/S0076-6879(97)76066-X CrossRefGoogle Scholar
  23. 23.
    P.D. Adams, P.V. Afonine, G. Bunkocz et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010). doi: 10.1107/S0907444909052925 CrossRefGoogle Scholar
  24. 24.
    P. Emsley, K. Cowta, Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004). doi: 10.1107/S0907444904019158 CrossRefGoogle Scholar
  25. 25.
    L. Grell, C. Parkin, L. Slatest et al., A tool for simplifying molecular viewing in PyMOL. Biochem. Mol. Biol. Educ. 34, 402–407 (2006). doi: 10.1002/bmb.2006.494034062672 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational MedicineXi’an Medical UniversityXi’anChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Protein Modification and TumorHubei Polytechnic University School of MedicineHuangshiChina
  4. 4.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  5. 5.Biotech and Biomedicine Science Co. Ltd.ShenyangChina
  6. 6.Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonUSA

Personalised recommendations