An active base designed in high-counting-rate applications for Hamamatsu R1924A photomultiplier tube

  • Pei-Pei Ren
  • Wei-Ping Lin
  • Roy Wada
  • Xing-Quan Liu
  • Mei-Rong Huang
  • Guo-Yu Tian
  • Fei Luo
  • Qi Sun
  • Zhi-Qiang Chen
  • Guo-Qing Xiao
  • Rui Han
  • Fu-Dong Shi
  • Bo-Xing Gou
Article
  • 42 Downloads

Abstract

Hamamatsu R1924A is one of the most widely used photomultiplier tubes (PMTs) in nuclear physics. Since the active base suitable for R1924A is still not available in market, an active base is designed for Hamamatsu R1924A PMT, and the test results at high counting rates are presented. The active bases with two different sets of resistor chains were tested and compared by a frequency-controlled green straw hat LED light. A stable signal output up to 100 kHz is achieved using frequency-controlled LED pulsed light. The temperature of bases, which reflects the power consumption and is crucial for applications in vacuum, is also monitored with the same LED pulsed light. The temperature of the active base with smaller resistances reaches about twice of that of the active base with larger resistances in the resistor chain. For the applications in vacuum, the active base with resistance between the two sets of resistor chains may be preferable.

Keywords

Active base High counting rate Hamamatsu R1924A photomultiplier tube 

References

  1. 1.
    F. Fu, W.P. Lin, X.Q. Liu et al., A module test of CCDA: an array to select the centrality of collisions in heavy ion collisions. Chin. Phys. Lett. 31, 082502 (2014). doi: 10.1088/0256-307X/31/8/082502 CrossRefGoogle Scholar
  2. 2.
    S. Wuenschel, K. Hagel, R. Wada et al., NIMROD-ISiS, a versatile tool for studying the isotopic degree of freedom in heavy ion collisions. Nucl. Instrum. Methods Phys. Res. A 604, 578 (2009). doi: 10.1016/j.nima.2009.03.187 CrossRefGoogle Scholar
  3. 3.
    M. Sasaki, W. R. Binns, R. G. Bose et al., Super-TIGER 2012/2013 in-flight instrument performance and preliminary results. International Cosmic Ray Conference, 0570 (2013). http://galprop.stanford.edu/elibrary/icrc/2013/papers/icrc2013-0570.pdf
  4. 4.
    P.R.B. Saull, L.E. Sinclair, H.C.J. Seywerd et al., First demonstration of a Compton gamma imager based on silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. A 679, 89 (2012). doi: 10.1016/j.nima.2012.03.019 CrossRefGoogle Scholar
  5. 5.
    S. Yamamoto, Optimization of the integration time of pulse shape analysis for dual-layer GSO detector with different amount of Ce. Nucl. Instrum. Methods Phys. Res. A 587, 319–323 (2008). doi: 10.1016/j.nima.2008.01.084 CrossRefGoogle Scholar
  6. 6.
    K.J. Thomas, E.B. Norman, A.R. Smith et al., Installation of a muon veto for low background gamma spectroscopy at the LBNL low-background facility. Nucl. Instrum. Methods Phys. Res. A 724, 47–53 (2013). doi: 10.1016/j.nima.2013.05.034 CrossRefGoogle Scholar
  7. 7.
    M. Huang, Z. Chen, S. Kowalski et al., Isobaric yield ratios and the symmetry energy in heavy-ion reactions near the Fermi energy. Phys. Rev. C 81, 044620 (2010). doi: 10.1103/PhysRevC.81.044620 CrossRefGoogle Scholar
  8. 8.
    M.R.D. Rodrigues, W. Lin, X. Liu et al., Experimental reconstruction of excitation energies of primary hot isotopes in heavy ion collisions near the Fermi energy. Phys. Rev. C 88, 034605 (2013). doi: 10.1103/PhysRevC.88.034605 CrossRefGoogle Scholar
  9. 9.
    R. Wada, M.R. Huang, W.P. Lin et al., IMF production and symmetry energy in heavy ion collisions near Fermi energy. Nucl. Sci. Technol. 24, 050501 (2013). doi: 10.13538/j.1001-8042/nst.2013.05.001 Google Scholar
  10. 10.
    S.S. Gao, C.Q. Feng, D. Jiang et al., Radiation tolerance studies on the VA32 ASIC for DAMPE BGO calorimeter. Nucl. Sci. Technol. 25, 010402 (2014). doi: 10.13538/j.1001-8042/nst.25.010402 Google Scholar
  11. 11.
  12. 12.
    S. Takeuchi, T. Nagai, Low power photomultiplier base circuit. IEEE Trans. Nucl. Sci. 32, 78 (1985). doi: 10.1109/TNS.1985.4336794 CrossRefGoogle Scholar
  13. 13.
    Hamamatsu Photonics, “Chapter 5: How to use photomultiplier tubs and peripheral circuits.” (2007). www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE-Chapter5.pdf

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Pei-Pei Ren
    • 1
    • 2
  • Wei-Ping Lin
    • 1
  • Roy Wada
    • 3
  • Xing-Quan Liu
    • 1
  • Mei-Rong Huang
    • 4
  • Guo-Yu Tian
    • 1
    • 2
  • Fei Luo
    • 1
    • 5
  • Qi Sun
    • 1
    • 2
  • Zhi-Qiang Chen
    • 1
  • Guo-Qing Xiao
    • 1
  • Rui Han
    • 1
  • Fu-Dong Shi
    • 1
  • Bo-Xing Gou
    • 1
  1. 1.Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Cyclotron Institute, Texas A&M UniversityCollege StationUSA
  4. 4.College of Physics and Electronics informationInner Mongolia University for NationalitiesTongliaoChina
  5. 5.University of Science and Technology of ChinaHefeiChina

Personalised recommendations