Skip to main content

Readout system for ground-based tests of BGO calorimeter of DAMPE satellite

Abstract

A readout system for ground-based tests of the bismuth germanium oxide (BGO) calorimeter of the Dark Matter Particle Explorer satellite is described in this paper. The system mainly consists of a data acquisition board with a field-programmable gate array to implement the control logic, and a graphical user interface software based on LabWindows/CVI. The system has been successfully applied in a series of ground-based environmental experiments and almost all the performance tests throughout the entire manufacturing processes. These contribute significantly to the development of the BGO calorimeter before being submitted for satellite-level integration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. J. Chang, J.H. Adams, H.S. Ahn et al., An excess of cosmic ray electrons at energies of 300–800 GeV. Nature 456, 362–365 (2008). doi:10.1038/nature07477

    Article  Google Scholar 

  2. L. Pieri, J. Lavalle, G. Bertone et al., Implications of high-resolution simulations on indirect dark matter searches. Phys. Rev. D 83, 023518 (2011). doi:10.1103/PhysRevD.83.023518

    Article  Google Scholar 

  3. J. March-Rusell, S. West, WIMPonium and boost factors for indirect dark matter detection. Phys. Lett. B 676, 133–139 (2009). doi:10.1016/j.physletb.2009.04.010

    Article  Google Scholar 

  4. M. Kamionkowski, Possible relics from new physics in the early universe: inflation, the cosmic microwave background, and particle dark matter. arXiv:astro-ph/9809214

  5. D. Clowe, M. Bradac, A.H. Gonzalez et al., A direct empirical proof of the existence of dark matter. Astrophys. J. Lett. 648, L109 (2006). doi:10.1086/508162

    Article  Google Scholar 

  6. S. Cripps, Dark matters [microwave bytes]. IEEE Microw. Mag. 12, 24–29 (2011). doi:10.1109/MMM.2011.941409

    Google Scholar 

  7. C. Feng, D. Zhang, J. Zhang et al., Design of the readout electronics for the BGO calorimeter of DAMPE mission. IEEE Trans. Nucl. Sci. 62, 3117–3125 (2015). doi:10.1109/TNS.2015.2479091

    Article  Google Scholar 

  8. J. Guo, M. Cai, Y. Hu et al., Readout electronics design of prototype of BGO calorimeter in Chinese space detector for Dark Matter Particle. Sci. Sin. 53, 72–79 (2012)

    Google Scholar 

  9. Z. Zhang, Y. Zhang, J. Dong et al., Design of a high dynamic range photomultiplier base board for the BGO ECAL of DAMPE. Nucl. Instrum. Meth. A 780, 21–26 (2015). doi:10.1016/j.nima.2015.01.036

    Article  Google Scholar 

  10. Y. Zhang, B. Li, C. Feng et al., A high dynamic range readout unit for a calorimeter. Chin. Phys. C 36, 71 (2012)

    Article  Google Scholar 

  11. IDEAS Inc. Norway, VA160 Datasheet. http://ideas.no/

  12. IDEAS Inc. Norway, VATA160 Datasheet. http://ideas.no/

  13. S. Gao, C. Feng, D. Jiang et al., Radiation tolerance studies on the VA32 ASIC for DAMPE BGO calorimeter. Nucl. Sci. Tech. 25, 010402 (2014). doi:10.13538/j.1001-8042/nst.25.010402

    Google Scholar 

  14. S. Ma, C. Feng, Z. Shen et al., A ground automatic testing system for the BGO calorimeter of dark matter particle explorer satellite. J. Nucl. Tech. 38, 120403 (2015). doi:10.11889/j.0253-3219.2015.hjs.38.120403. (in Chinese)

    Google Scholar 

  15. Y. Huang, S. Liu, C. Feng et al., The data acquisition software based on LabWindows/CVI in pre-research system of dark matter particles detection in space. Nucl. Electron. Detection Technol. 32, 407–411 (2012). doi:10.3969/j.issn.0258-0934.2012.04.009. (in Chinese)

    Google Scholar 

  16. J. Dong, Y. Zhang, S. Wen et al., Development of an automatic test system for the PMTs used in the BGO ECAL of DAMPE. PoS(ICRC2015)1195

  17. D. Zhang, C. Feng, J. Zhang et al., Onboard calibration circuit for the front-end electronics of DAMPE BGO calorimeter. Chin. Phys. C 40, 56101 (2016). doi:10.1088/1674-1137/40/5/056101

    Article  Google Scholar 

  18. Z. Zhang, C. Wang, J. Dong et al., The calibration and electron energy reconstruction of the BGO ECAL of the DAMPE detector. Nucl. Instrum. Meth. A 836, 98–104 (2016). doi:10.1016/j.nima.2016.08.015

    Article  Google Scholar 

  19. Z. Li, Z. Zhang, Y. Wei et al., Energy correction for the BGO calorimeter of DAMPE using an electron beam. Chin. Phys. C 40, 086202 (2016)

    Article  Google Scholar 

  20. Y. Wei, Z. Zhang, Y. Zhang et al., Temperature dependence calibration and correction of the DAMPE BGO electronmagnetic calorimeter. arXiv:1604.08060

  21. Y. Wei, Z. Zhang, Y. Zhang et al., Performance of the BGO detector element of the DAMPE calorimeter. IEEE Trans. Nucl. Sci. 63, 548–551 (2016). doi:10.1109/TNS.2016.2541690

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Yunlong Zhang, Dr. Zhiyong Zhang, and Dr. Yifeng Wei for helpful discussions and useful suggestions. We would also like to thank all the colleagues from DAMPE collaboration who helped make this work possible. This work was supported in part by the CAS Center for Excellence in Particle Physics (CCEPP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Qing Feng.

Additional information

This work was supported by the Strategic Priority Research Program on Space Science of Chinese Academy of Sciences (No. XDA04040202-4) and the National Basic Research Program (973 Program) of China (No. 2010CB833002).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, JB., Feng, CQ., Ma, SY. et al. Readout system for ground-based tests of BGO calorimeter of DAMPE satellite. NUCL SCI TECH 28, 143 (2017). https://doi.org/10.1007/s41365-017-0297-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0297-5

Keywords

  • DAMPE
  • BGO calorimeter
  • Readout system