Readout system for ground-based tests of BGO calorimeter of DAMPE satellite

  • Jun-Bin Zhang
  • Chang-Qing Feng
  • Si-Yuan Ma
  • Qi Wang
  • Shu-Bin Liu
  • Qi An


A readout system for ground-based tests of the bismuth germanium oxide (BGO) calorimeter of the Dark Matter Particle Explorer satellite is described in this paper. The system mainly consists of a data acquisition board with a field-programmable gate array to implement the control logic, and a graphical user interface software based on LabWindows/CVI. The system has been successfully applied in a series of ground-based environmental experiments and almost all the performance tests throughout the entire manufacturing processes. These contribute significantly to the development of the BGO calorimeter before being submitted for satellite-level integration.


DAMPE BGO calorimeter Readout system 



We would like to thank Dr. Yunlong Zhang, Dr. Zhiyong Zhang, and Dr. Yifeng Wei for helpful discussions and useful suggestions. We would also like to thank all the colleagues from DAMPE collaboration who helped make this work possible. This work was supported in part by the CAS Center for Excellence in Particle Physics (CCEPP).


  1. 1.
    J. Chang, J.H. Adams, H.S. Ahn et al., An excess of cosmic ray electrons at energies of 300–800 GeV. Nature 456, 362–365 (2008). doi: 10.1038/nature07477 CrossRefGoogle Scholar
  2. 2.
    L. Pieri, J. Lavalle, G. Bertone et al., Implications of high-resolution simulations on indirect dark matter searches. Phys. Rev. D 83, 023518 (2011). doi: 10.1103/PhysRevD.83.023518 CrossRefGoogle Scholar
  3. 3.
    J. March-Rusell, S. West, WIMPonium and boost factors for indirect dark matter detection. Phys. Lett. B 676, 133–139 (2009). doi: 10.1016/j.physletb.2009.04.010 CrossRefGoogle Scholar
  4. 4.
    M. Kamionkowski, Possible relics from new physics in the early universe: inflation, the cosmic microwave background, and particle dark matter. arXiv:astro-ph/9809214
  5. 5.
    D. Clowe, M. Bradac, A.H. Gonzalez et al., A direct empirical proof of the existence of dark matter. Astrophys. J. Lett. 648, L109 (2006). doi: 10.1086/508162 CrossRefGoogle Scholar
  6. 6.
    S. Cripps, Dark matters [microwave bytes]. IEEE Microw. Mag. 12, 24–29 (2011). doi: 10.1109/MMM.2011.941409 Google Scholar
  7. 7.
    C. Feng, D. Zhang, J. Zhang et al., Design of the readout electronics for the BGO calorimeter of DAMPE mission. IEEE Trans. Nucl. Sci. 62, 3117–3125 (2015). doi: 10.1109/TNS.2015.2479091 CrossRefGoogle Scholar
  8. 8.
    J. Guo, M. Cai, Y. Hu et al., Readout electronics design of prototype of BGO calorimeter in Chinese space detector for Dark Matter Particle. Sci. Sin. 53, 72–79 (2012)Google Scholar
  9. 9.
    Z. Zhang, Y. Zhang, J. Dong et al., Design of a high dynamic range photomultiplier base board for the BGO ECAL of DAMPE. Nucl. Instrum. Meth. A 780, 21–26 (2015). doi: 10.1016/j.nima.2015.01.036 CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, B. Li, C. Feng et al., A high dynamic range readout unit for a calorimeter. Chin. Phys. C 36, 71 (2012)CrossRefGoogle Scholar
  11. 11.
    IDEAS Inc. Norway, VA160 Datasheet.
  12. 12.
    IDEAS Inc. Norway, VATA160 Datasheet.
  13. 13.
    S. Gao, C. Feng, D. Jiang et al., Radiation tolerance studies on the VA32 ASIC for DAMPE BGO calorimeter. Nucl. Sci. Tech. 25, 010402 (2014). doi: 10.13538/j.1001-8042/nst.25.010402 Google Scholar
  14. 14.
    S. Ma, C. Feng, Z. Shen et al., A ground automatic testing system for the BGO calorimeter of dark matter particle explorer satellite. J. Nucl. Tech. 38, 120403 (2015). doi: 10.11889/j.0253-3219.2015.hjs.38.120403. (in Chinese) Google Scholar
  15. 15.
    Y. Huang, S. Liu, C. Feng et al., The data acquisition software based on LabWindows/CVI in pre-research system of dark matter particles detection in space. Nucl. Electron. Detection Technol. 32, 407–411 (2012). doi: 10.3969/j.issn.0258-0934.2012.04.009. (in Chinese) Google Scholar
  16. 16.
    J. Dong, Y. Zhang, S. Wen et al., Development of an automatic test system for the PMTs used in the BGO ECAL of DAMPE. PoS(ICRC2015)1195Google Scholar
  17. 17.
    D. Zhang, C. Feng, J. Zhang et al., Onboard calibration circuit for the front-end electronics of DAMPE BGO calorimeter. Chin. Phys. C 40, 56101 (2016). doi: 10.1088/1674-1137/40/5/056101 CrossRefGoogle Scholar
  18. 18.
    Z. Zhang, C. Wang, J. Dong et al., The calibration and electron energy reconstruction of the BGO ECAL of the DAMPE detector. Nucl. Instrum. Meth. A 836, 98–104 (2016). doi: 10.1016/j.nima.2016.08.015 CrossRefGoogle Scholar
  19. 19.
    Z. Li, Z. Zhang, Y. Wei et al., Energy correction for the BGO calorimeter of DAMPE using an electron beam. Chin. Phys. C 40, 086202 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Wei, Z. Zhang, Y. Zhang et al., Temperature dependence calibration and correction of the DAMPE BGO electronmagnetic calorimeter. arXiv:1604.08060
  21. 21.
    Y. Wei, Z. Zhang, Y. Zhang et al., Performance of the BGO detector element of the DAMPE calorimeter. IEEE Trans. Nucl. Sci. 63, 548–551 (2016). doi: 10.1109/TNS.2016.2541690 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Jun-Bin Zhang
    • 1
    • 2
  • Chang-Qing Feng
    • 1
    • 2
  • Si-Yuan Ma
    • 1
    • 2
  • Qi Wang
    • 1
    • 2
  • Shu-Bin Liu
    • 1
    • 2
  • Qi An
    • 1
    • 2
  1. 1.State Key Laboratory of Particle Detection and ElectronicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations