Total ionizing dose effect of gamma rays on H-gate PDSOI MOS devices at different dose rates

  • Qian-Qiong Wang
  • Hong-Xia Liu
  • Shu-Long Wang
  • Chen-Xi Fei
  • Dong-Dong Zhao
  • Shu-Peng Chen
  • Wei Chen


The total dose effect of 60Co γ-rays on 0.8-μm H-gate partially depleted-silicon-on-insulator NMOS devices was investigated at different irradiation doses. The results show that the shift in saturation current at high dose rate is greater than that at low dose rate, due to increase in interface-state density with decreasing dose rate; the scattering effect of interface state on electrons in the channel causes degradation in carrier mobility; and the body current and transconductance of the back gate enhance low-dose-rate sensitivity when the irradiation is under OFF-bias. A double transconductance peak is observed at 3 kGy(Si) under high dose rates.


PDSOI device Total dose irradiation Interface states Mobility 



These sample irradiations were conducted in the 60Co Source at the Northwest Institute of Nuclear Technology. The authors thank Mr. Yao Zhi-Bin, Mr. He Bao-Ping, and their colleagues for their kind help in the experiments.


  1. 1.
    S.S. Rathod, A.K. Saxena, S. Dasgupta, Alpha-particle-induced effects in partially depleted silicon on insulator devices: with and without contact. IET Circuits Devices Syst. 5, 52–58 (2011). doi: 10.1049/iet-cds.2010.0080 CrossRefGoogle Scholar
  2. 2.
    N. Vinodhkumar, Y.V. Bhuvaneshwari, K.K. Nagaraian et al., Heavy-ion irradiation study in SOI-based and bulk-based junctionless FinFETs using 3D-TCAD simulation. Microelectron. Reliab. 55, 2647–2653 (2015). doi: 10.1016/j.microrel.2015.09.011 CrossRefGoogle Scholar
  3. 3.
    J.X. Lou, J. Chen, Z. Chai et al., Total dose effects in tunnel-diode body-contact SOI nMOSFETs. IEEE Trans. Nucl. Sci. 61, 3018–3022 (2014). doi: 10.1109/TNS.2014.2364923 CrossRefGoogle Scholar
  4. 4.
    C. Peng, Z.Y. Hu, B.X. Ning et al., Radiation-enhanced gate-induced-drain-leakage current in the 130 nm partially-depleted SOI pMOSFET. Solid State Electron. 106, 81–86 (2015). doi: 10.1016/j.sse.2015.01.023 CrossRefGoogle Scholar
  5. 5.
    X. Wu, W. Lu, X. Wang et al., Influence of channel length and layout on TID for 0.18 μm NMOS transistors. Nucl. Sci. Tech. 24, 060202–060206 (2013). doi: 10.13538/j.1001-8042/nst.2013.06.019 Google Scholar
  6. 6.
    L.L. Li, Z.G. Yu, Z.Q. Xiao et al., Threshold voltage degradation mechanism of SOI SONOS EEPROM under total-dose irradiation. Acta Phys. Sinica (2011). doi: 10.7498/aps.60.098502. (in Chinese) Google Scholar
  7. 7.
    F. Tan, R. Huang, X. An et al., Total ionizing dose (TID) effect and single event effect (SEE) in quasi-SOI nMOSFETs. Semicond. Sci. Technol. 29, 15010–15016 (2014). doi: 10.1088/0268-1242/29/1/015010 CrossRefGoogle Scholar
  8. 8.
    H.X. Huang, Y.Y. Huang, J.C. Zheng et al., Hardening silicon-on-insulator nMOSFETs by multiple-step Si + implantation. Microelectron. Reliab. 57, 1–9 (2016). doi: 10.1016/j.microrel.2015.12.015 CrossRefGoogle Scholar
  9. 9.
    I. Kurachi, K. Kobayashi, M. Mochizuki et al., Tradeoff between low-power operation and radiation hardness of fully depleted SOI pMOSFET by changing LDD conditions. IEEE Electron Dev. Lett. 63(6), 2293–2298 (2016). doi: 10.1109/TED.2016.2552486 CrossRefGoogle Scholar
  10. 10.
    M. Asano, D. Sekigawa, K. Hara et al., Characteristics of non-irradiated and irradiated double SOI integration type pixel sensor. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 831, 315–321 (2016). doi: 10.1016/j.nima.2016.03.095 CrossRefGoogle Scholar
  11. 11.
    B.P. He, Z.B. Yao, J.K. Sheng et al., Study of the dose rate effect of 180 nm nMOSFETs. Chin. Phys. C (2015). doi: 10.1088/1674-1137/39/1/016004 Google Scholar
  12. 12.
    V.D. Popov, Two stages of surface-defect formation in a MOS Structure under low-dose rate gamma irradiation. Semiconductors 50, 349–351 (2016). doi: 10.1134/S1063782616030209 CrossRefGoogle Scholar
  13. 13.
    D.M. Fleetwood, Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices. IEEE Trans. Nucl. Sci. 60(3), 1706–1730 (2013). doi: 10.1109/TNS.2013.2259260 CrossRefGoogle Scholar
  14. 14.
    P.C. Adell, B. Rax, I.S. Esqueda et al., Hydrogen limits for total dose and dose rate response in linear bipolar circuits. IEEE Trans. Nucl. Sci. 62, 2476–2481 (2015). doi: 10.1109/TNS.2015.2500198 CrossRefGoogle Scholar
  15. 15.
    V.S. Pershenkov, A.S. Bakerenkov, V.S. Felitsyn et al., ELDRS in SiGe transistors for room and low-temperature irradiation. Microelectron. Reliab. 63, 56–59 (2016). doi: 10.1016/j.microrel.2016.05.010 CrossRefGoogle Scholar
  16. 16.
    J. Boch, A. Michez, M. Rousselet et al., Dose rate switching technique on ELDRS-free bipolar devices. IEEE Trans. Nucl. Sci. (2016). doi: 10.1109/TNS.2015.2512620 Google Scholar
  17. 17.
    B.P. He, G.Z. Wang, H. Zhou et al., Predicting NMOS device radiation response at different dose rates in γ ray environment. Acta Phys. Sinica 52, 188–191 (2003). (in Chinese) Google Scholar
  18. 18.
    B. Lan, Q. Guo, J. Sun et al., Dose-rate effects of p-channel metal oxide semiconductor field-effect transistors at various biasing conditions. J. Semicond. (2010). doi: 10.1088/1674-4926/31/5/054004 Google Scholar
  19. 19.
    J. Alvarado, E. Boufouss, V. Kilchytska et al., Compact model for single event transients and total dose effects at high temperatures for partially depleted SOI MOSFETs. Microelectron. Reliab. 50, 1852–1856 (2010). doi: 10.1016/j.microrel.2010.07.040 CrossRefGoogle Scholar
  20. 20.
    S.N. Rashkeev, C.R. Cirba, D.M. Fleetwood et al., Physical model for enhanced interface-trap formation at low dose rates. IEEE Trans. Nucl. Sci. 49, 2650–2655 (2002). doi: 10.1109/TNS.2002.805387 CrossRefGoogle Scholar
  21. 21.
    H.P. Hjalmarson, R.L. Pease, R.A.B. Devine et al., Calculations of radiation dose-rate sensitivity of bipolar transistors. IEEE Trans. Nucl. Sci. 55, 3009–3015 (2008). doi: 10.1109/TNS.2008.2007487 CrossRefGoogle Scholar
  22. 22.
    S.E. Ivan, J.B. Hugh, C. Philippe et al., Modeling low dose rate effects in shallow trench isolation oxides. IEEE Trans. Nucl. Sci. 58, 2945–2952 (2011). doi: 10.1109/TNS.2011.2168569 CrossRefGoogle Scholar
  23. 23.
    S.E. Ivan, J.B. Hugh, C. Philippe et al., Modeling the effects of hydrogen on the mechanisms of dose rate sensitivity. IEEE Trans. Nucl. Sci. 59, 701–706 (2012). doi: 10.1109/RADECS.2011.6131290 CrossRefGoogle Scholar
  24. 24.
    C. Peng, Z.Y. Hu, B.X. Ning et al., Total-ionizing-dose induced coupling effect in the 130-nm PDSOI I/O nMOSFETs. IEEE Electron Dev. Lett. 35, 503–505 (2014). doi: 10.1109/LED.2014.2311453 CrossRefGoogle Scholar
  25. 25.
    V. Ferlet-Cavrois, T. Colladant, P. Paillet et al., Worst-case bias during total dose irradiation of SOI transistors. IEEE Trans. Nucl. Sci. 47, 2183–2188 (2000). doi: 10.1109/23.903751 CrossRefGoogle Scholar
  26. 26.
    N.J. Wang, Z.L. Liu, N. Li et al., Total dose irradiation of FD SOI NMOSFET under different bias configurations. J. Semicond. 28, 750–754 (2007). doi: 10.3321/j.issn:0253-4177.2007.05.024. (in Chinese) Google Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Qian-Qiong Wang
    • 1
  • Hong-Xia Liu
    • 1
  • Shu-Long Wang
    • 1
  • Chen-Xi Fei
    • 1
  • Dong-Dong Zhao
    • 1
  • Shu-Peng Chen
    • 1
  • Wei Chen
    • 1
  1. 1.Key Laboratory for Wide Band Gap Semiconductor Materials and Devices of Education, School of MicroelectronicsXidian UniversityXi’anChina

Personalised recommendations