Skip to main content
Log in

Total ionizing dose effect of gamma rays on H-gate PDSOI MOS devices at different dose rates

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The total dose effect of 60Co γ-rays on 0.8-μm H-gate partially depleted-silicon-on-insulator NMOS devices was investigated at different irradiation doses. The results show that the shift in saturation current at high dose rate is greater than that at low dose rate, due to increase in interface-state density with decreasing dose rate; the scattering effect of interface state on electrons in the channel causes degradation in carrier mobility; and the body current and transconductance of the back gate enhance low-dose-rate sensitivity when the irradiation is under OFF-bias. A double transconductance peak is observed at 3 kGy(Si) under high dose rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.S. Rathod, A.K. Saxena, S. Dasgupta, Alpha-particle-induced effects in partially depleted silicon on insulator devices: with and without contact. IET Circuits Devices Syst. 5, 52–58 (2011). doi:10.1049/iet-cds.2010.0080

    Article  Google Scholar 

  2. N. Vinodhkumar, Y.V. Bhuvaneshwari, K.K. Nagaraian et al., Heavy-ion irradiation study in SOI-based and bulk-based junctionless FinFETs using 3D-TCAD simulation. Microelectron. Reliab. 55, 2647–2653 (2015). doi:10.1016/j.microrel.2015.09.011

    Article  Google Scholar 

  3. J.X. Lou, J. Chen, Z. Chai et al., Total dose effects in tunnel-diode body-contact SOI nMOSFETs. IEEE Trans. Nucl. Sci. 61, 3018–3022 (2014). doi:10.1109/TNS.2014.2364923

    Article  Google Scholar 

  4. C. Peng, Z.Y. Hu, B.X. Ning et al., Radiation-enhanced gate-induced-drain-leakage current in the 130 nm partially-depleted SOI pMOSFET. Solid State Electron. 106, 81–86 (2015). doi:10.1016/j.sse.2015.01.023

    Article  Google Scholar 

  5. X. Wu, W. Lu, X. Wang et al., Influence of channel length and layout on TID for 0.18 μm NMOS transistors. Nucl. Sci. Tech. 24, 060202–060206 (2013). doi:10.13538/j.1001-8042/nst.2013.06.019

    Google Scholar 

  6. L.L. Li, Z.G. Yu, Z.Q. Xiao et al., Threshold voltage degradation mechanism of SOI SONOS EEPROM under total-dose irradiation. Acta Phys. Sinica (2011). doi:10.7498/aps.60.098502. (in Chinese)

    Google Scholar 

  7. F. Tan, R. Huang, X. An et al., Total ionizing dose (TID) effect and single event effect (SEE) in quasi-SOI nMOSFETs. Semicond. Sci. Technol. 29, 15010–15016 (2014). doi:10.1088/0268-1242/29/1/015010

    Article  Google Scholar 

  8. H.X. Huang, Y.Y. Huang, J.C. Zheng et al., Hardening silicon-on-insulator nMOSFETs by multiple-step Si + implantation. Microelectron. Reliab. 57, 1–9 (2016). doi:10.1016/j.microrel.2015.12.015

    Article  Google Scholar 

  9. I. Kurachi, K. Kobayashi, M. Mochizuki et al., Tradeoff between low-power operation and radiation hardness of fully depleted SOI pMOSFET by changing LDD conditions. IEEE Electron Dev. Lett. 63(6), 2293–2298 (2016). doi:10.1109/TED.2016.2552486

    Article  Google Scholar 

  10. M. Asano, D. Sekigawa, K. Hara et al., Characteristics of non-irradiated and irradiated double SOI integration type pixel sensor. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 831, 315–321 (2016). doi:10.1016/j.nima.2016.03.095

    Article  Google Scholar 

  11. B.P. He, Z.B. Yao, J.K. Sheng et al., Study of the dose rate effect of 180 nm nMOSFETs. Chin. Phys. C (2015). doi:10.1088/1674-1137/39/1/016004

    Google Scholar 

  12. V.D. Popov, Two stages of surface-defect formation in a MOS Structure under low-dose rate gamma irradiation. Semiconductors 50, 349–351 (2016). doi:10.1134/S1063782616030209

    Article  Google Scholar 

  13. D.M. Fleetwood, Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices. IEEE Trans. Nucl. Sci. 60(3), 1706–1730 (2013). doi:10.1109/TNS.2013.2259260

    Article  Google Scholar 

  14. P.C. Adell, B. Rax, I.S. Esqueda et al., Hydrogen limits for total dose and dose rate response in linear bipolar circuits. IEEE Trans. Nucl. Sci. 62, 2476–2481 (2015). doi:10.1109/TNS.2015.2500198

    Article  Google Scholar 

  15. V.S. Pershenkov, A.S. Bakerenkov, V.S. Felitsyn et al., ELDRS in SiGe transistors for room and low-temperature irradiation. Microelectron. Reliab. 63, 56–59 (2016). doi:10.1016/j.microrel.2016.05.010

    Article  Google Scholar 

  16. J. Boch, A. Michez, M. Rousselet et al., Dose rate switching technique on ELDRS-free bipolar devices. IEEE Trans. Nucl. Sci. (2016). doi:10.1109/TNS.2015.2512620

    Google Scholar 

  17. B.P. He, G.Z. Wang, H. Zhou et al., Predicting NMOS device radiation response at different dose rates in γ ray environment. Acta Phys. Sinica 52, 188–191 (2003). (in Chinese)

    Google Scholar 

  18. B. Lan, Q. Guo, J. Sun et al., Dose-rate effects of p-channel metal oxide semiconductor field-effect transistors at various biasing conditions. J. Semicond. (2010). doi:10.1088/1674-4926/31/5/054004

    Google Scholar 

  19. J. Alvarado, E. Boufouss, V. Kilchytska et al., Compact model for single event transients and total dose effects at high temperatures for partially depleted SOI MOSFETs. Microelectron. Reliab. 50, 1852–1856 (2010). doi:10.1016/j.microrel.2010.07.040

    Article  Google Scholar 

  20. S.N. Rashkeev, C.R. Cirba, D.M. Fleetwood et al., Physical model for enhanced interface-trap formation at low dose rates. IEEE Trans. Nucl. Sci. 49, 2650–2655 (2002). doi:10.1109/TNS.2002.805387

    Article  Google Scholar 

  21. H.P. Hjalmarson, R.L. Pease, R.A.B. Devine et al., Calculations of radiation dose-rate sensitivity of bipolar transistors. IEEE Trans. Nucl. Sci. 55, 3009–3015 (2008). doi:10.1109/TNS.2008.2007487

    Article  Google Scholar 

  22. S.E. Ivan, J.B. Hugh, C. Philippe et al., Modeling low dose rate effects in shallow trench isolation oxides. IEEE Trans. Nucl. Sci. 58, 2945–2952 (2011). doi:10.1109/TNS.2011.2168569

    Article  Google Scholar 

  23. S.E. Ivan, J.B. Hugh, C. Philippe et al., Modeling the effects of hydrogen on the mechanisms of dose rate sensitivity. IEEE Trans. Nucl. Sci. 59, 701–706 (2012). doi:10.1109/RADECS.2011.6131290

    Article  Google Scholar 

  24. C. Peng, Z.Y. Hu, B.X. Ning et al., Total-ionizing-dose induced coupling effect in the 130-nm PDSOI I/O nMOSFETs. IEEE Electron Dev. Lett. 35, 503–505 (2014). doi:10.1109/LED.2014.2311453

    Article  Google Scholar 

  25. V. Ferlet-Cavrois, T. Colladant, P. Paillet et al., Worst-case bias during total dose irradiation of SOI transistors. IEEE Trans. Nucl. Sci. 47, 2183–2188 (2000). doi:10.1109/23.903751

    Article  Google Scholar 

  26. N.J. Wang, Z.L. Liu, N. Li et al., Total dose irradiation of FD SOI NMOSFET under different bias configurations. J. Semicond. 28, 750–754 (2007). doi:10.3321/j.issn:0253-4177.2007.05.024. (in Chinese)

    Google Scholar 

Download references

Acknowledgements

These sample irradiations were conducted in the 60Co Source at the Northwest Institute of Nuclear Technology. The authors thank Mr. Yao Zhi-Bin, Mr. He Bao-Ping, and their colleagues for their kind help in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Xia Liu or Shu-Long Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 61376099), the Foundation for Fundamental Research of China (No. JSZL2016110B003) and the Major Fundamental Research Program of Shaanxi (No.2017ZDJC-26).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QQ., Liu, HX., Wang, SL. et al. Total ionizing dose effect of gamma rays on H-gate PDSOI MOS devices at different dose rates. NUCL SCI TECH 28, 151 (2017). https://doi.org/10.1007/s41365-017-0295-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0295-7

Keywords

Navigation