Evaluation of terrestrial radiation in the Chengdu Plain using 1/250,000-scale geochemical prospecting data

  • Qing-Xian Zhang
  • Jian-Kun Zhao
  • Yi Gu
  • Liang-Quan Ge
  • Yuan-Qing Huang


Based on the geochemical prospecting data, we have calculated the gamma absorbed dose rates in air 1 m above the ground surface in the Chengdu Plain, analyzed the relationship between the geological conditions and the distribution of the natural radionuclides, and preliminarily studied the influence of the geological conditions on the terrestrial radiation level in the Chengdu Plain. The result shows that the terrestrial radiation level in the Chengdu Plain is slightly lower than the average values of China and varies greatly according to the complex geological conditions.


Terrestrial radiation level Geological condition Natural radionuclides in soil and rock External exposures 



The authors sincerely thank the Sichuan Geological Survey for providing the geochemical prospecting data.


  1. 1.
    UNSCEAR, Sources and Effects of Ionizing Radiation. Annex A: Dose Assessment Methodologies (United Nations, New York, 2000)Google Scholar
  2. 2.
    UNSCEAR, Sources and Effects of Ionizing Radiation. Annex B: Exposure from Natural Sources (United Nations, New York, 2000)Google Scholar
  3. 3.
    International Atomic Energy Agency, Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data (Vienna, Austria, 2003)Google Scholar
  4. 4.
    UNSCEAR, Sources and Effects of Ionizing Radiation. Volume I: Sources (United Nations, New York, 2008)Google Scholar
  5. 5.
    G.A. Aycik, New Techniques for the Detection of Nuclear and Radioactive Agents (Springer, Dordrecht, 2009), pp. 1–13CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, R. Hua, B. Shi, Radioactivity Prospecting Methods (Atomic Energy Press, Beijing, 1990) (in Chinese) Google Scholar
  7. 7.
    N.N. Jibiri, Assessment of health risk levels associated with terrestrial gamma radiation dose rates in Nigeria. Environ. Int. 27, 21–26 (2001). doi: 10.1016/S0160-4120(01)00039-3 CrossRefGoogle Scholar
  8. 8.
    S.K. Lee, H. Wagiran, A.T. Ramli et al., Radiological monitoring: terrestrial natural radionuclides in Kinta District, Perak, Malaysia. J. Environ. Radioact. 100, 368–374 (2009). doi: 10.1016/j.jenvrad.2009.01.001 CrossRefGoogle Scholar
  9. 9.
    Oktay Baykara, Mahmut Dogru, Determination of terrestrial gamma, 238U, 232Th and 40K in soil along fracture zones. Radiat. Meas. 44, 116–121 (2009). doi: 10.1016/j.radmeas.2008.10.001 CrossRefGoogle Scholar
  10. 10.
    F. Mireles, J.I. Davila, L.L. Quirino et al., Natural soil gamma radioactivity levels and resultant population dose in the cities of Zacatecas and Guadalupe, Zacatecas, Mexico. Health Phys. 84, 368–372 (2003). doi: 10.1097/00004032-200303000-00010 CrossRefGoogle Scholar
  11. 11.
    L.S. Quindos, P.L. Fernandez, J. Soto et al., Natural radioactivity in Spanish soils. Health Phys. 66, 194–200 (1994). doi: 10.1097/00004032-199402000-00010 CrossRefGoogle Scholar
  12. 12.
    B. Senthilkumar, V. Dhavamani, Measurement of gamma radiation levels in soil samples from Thanjavur using γ-ray spectrometry and estimation of population exposure. J. Med. Phys. 35, 48–53 (2010). doi: 10.4103/0971-6203.55966 CrossRefGoogle Scholar
  13. 13.
    Y. Huang, G. Guo, L. Yang et al., A comparative study of terrestrial gamma dose rate in air measured by thermoluminescent dosimeter, portable survey meter and HPGe gamma spectrometer. J. Environ. Radioact. 164, 13–18 (2016). doi: 10.1016/j.jenvrad.2016.06.020 CrossRefGoogle Scholar
  14. 14.
    H.L. Beck, J. DeCampo, C. Gogolak, In Situ Ge(Li) and NaI(Tl) Gamma-Ray Spectrometry (HASL-258, New York, 1972)CrossRefGoogle Scholar
  15. 15.
    Y. Xia, L. Cheng, Advanced Ionizing Radiation Protection (Harbin Engineering University Press, Harbin, 2010) (in Chinese) Google Scholar
  16. 16.
    Bureau of Geology and Mineral Resources of Sichuan Province. Regional Geology of Sichuan Province (Geological Publishing House, Beijing, 1991)Google Scholar
  17. 17.
    D. Yao, F. Fang, C. Li, A general account of the regional geology of Sichuan province. Reg. Geol. China 1, 8–12 (1990) (in Chinese) Google Scholar
  18. 18.
    B. Liang, Quaternary Geology and Environment in Chengdu Plain (Science Press, Beijing, 2014) (in Chinese) Google Scholar
  19. 19.
    Z. Wang, Natural radiation environment in China. Int. Congr. Ser. 1225, 39–46 (2002). doi: 10.1016/S0531-5131(01)00548-9 CrossRefGoogle Scholar
  20. 20.
    UNSCEAR, Sources and Effects of Ionizing Radiation. Annex A: Exposures from Natural Sources of Radiation (United Nations, New York, 1993)Google Scholar
  21. 21.
    A.E.M. Khater, H.A. Al-Sewaidan, Radiation exposure due to agricultural uses of phosphate fertilizers. Radiat. Meas. 43, 1402–1407 (2008). doi: 10.1016/j.radmeas.2008.04.084 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Qing-Xian Zhang
    • 1
  • Jian-Kun Zhao
    • 1
  • Yi Gu
    • 1
  • Liang-Quan Ge
    • 1
  • Yuan-Qing Huang
    • 2
  1. 1.Sichuan-Provincial Key Laboratory of Nuclear Technology in GeosciencesChengdu University of TechnologyChengduChina
  2. 2.Sichuan Nuclear Geology InstituteChengduChina

Personalised recommendations