Advertisement

Behaviors of fine (IG-110) and ultra-fine (HPG-510) grain graphite irradiated by 7 MeV Xe26+ ions

  • Wei Qi
  • Zhou-Tong He
  • Bao-Liang Zhang
  • Xiu-Jie He
  • Can Zhang
  • Jin-Liang Song
  • Guan-Hong Lei
  • Xing-Tai Zhou
  • Hui-Hao Xia
  • Ping Huai
Article
  • 78 Downloads

Abstract

Developing a molten salt reactor needs molten salt–impermeable nuclear graphite. Ultra-fine grain graphite is a good choice as it is better in permeability than fine grain graphite. In this paper, ultra-fine grain graphite (HPG-510) and fine grain graphite (IG-110) samples are irradiated at room temperature by 7 MeV Xe ions to doses of 1 × 1014–5 × 1015 ions/cm2. Scanning electron microscopy, transmission electron microscopy (TEM), Raman spectroscopy and nano-indentation are used to study the radiation-induced changes. After irradiation of different doses, all the HPG-510 samples show less surface fragment than the IG-110 samples. The TEM and Raman spectra, and the hardness and modulus characterized by nano-indentation, also indicate that HPG-510 is more resistant to irradiation.

Keywords

Molten salt reactor Graphite Ion irradiation Raman spectra Hardness and Young’s modulus 

References

  1. 1.
    W.P. Eatherly, Nuclear graphite—The first years. J. Nucl. Mater. 100, 55–63 (1981). doi: 10.1016/0022-3115(81)90519-5 CrossRefGoogle Scholar
  2. 2.
    W. Xu, L. Shi, Y.H. Zheng, Transient analysis of nuclear graphite oxidation for high temperature gas cooled reactor. Nucl. Eng. Des. 306, 138–144 (2016). doi: 10.1016/j.nucengdes.2016.04.029 CrossRefGoogle Scholar
  3. 3.
    R.E. Nightingale, Nuclear graphite. J. Franklin. Inst. 275, 154–701 (1963). doi: 10.1016/0016-0032(63)90878-0 Google Scholar
  4. 4.
    T.R. Allen, K. Sridharan, L. Tan et al., Materials challenges for Generation IV nuclear energy systems. Nucl. Technol. 162, 342–357 (2008). http://epubs.ans.org/?a=3961
  5. 5.
    H.G. Macpherson, The molten salt reactor adventure. Nucl. Sci. Eng. 90, 374–380 (1985). doi: 10.13182/NSE90-374 CrossRefGoogle Scholar
  6. 6.
    R. Vadi, K. Sepanloo, An improved porous media model for nuclear reactor analysis. Nucl. Sci. Tech. 27, 1–24 (2016). doi: 10.1007/s41365-016-0016-7 CrossRefGoogle Scholar
  7. 7.
    Z. He, L. Gao, X. Wang et al., Improvement of stacking order in graphite by molten fluoride salt infiltration. Carbon 72, 304–311 (2014). doi: 10.1016/j.carbon.2014.02.010 CrossRefGoogle Scholar
  8. 8.
    W.T. Zhang, B.L. Zhang, J.L. Song et al., Microstructure and molten salt impregnation characteristics of a micro-a micro-fine grain graphite for use in molten salt reactors. New Carbon Mater. 31, 585–593 (2016). doi: 10.1016/S1872-5805(16)60034-3 CrossRefGoogle Scholar
  9. 9.
    W. Qi, Z.T. He, H. Tang et al., Effects of FLiNaK infiltration on thermal expansion behavior of graphite. J. Mater. Sci. 52, 4621–4634 (2016). doi: 10.1007/s10853-016-0706-x CrossRefGoogle Scholar
  10. 10.
    H.E. McCoy, R.L. Beatty, W.H. Cook et al., New developments in materials for molten-salt reactors. Nucl. Technol. 8, 156–196 (1970). http://epubs.ans.org/?a=28622
  11. 11.
    P.R. Kasten, E.S. Bettis, W.H. Cook et al., Graphite behavior and its effects on MSBR performance. Nucl. Eng. Des. 9, 157–195 (1969). doi: 10.1016/0029-5493(69)90057-0 CrossRefGoogle Scholar
  12. 12.
    X.W. Lyu, X.B. Xia, Z.H. Zhang et al., Analysis of tritium production in a 2 MW liquid-fueled molten salt experimental reactor and its environmental impact. Nucl. Sci. Tech. 27, 78 (2016). doi: 10.1007/s41365-016-0100-z CrossRefGoogle Scholar
  13. 13.
    K. Yang, W. Qin, J.G. Chen et al., Neutron excess method for performance assessment of thorium-based fuel in a breed-and-burn reactor with various coolants. Nucl. Sci. Tech. 27, 99 (2016). doi: 10.1007/s41365-016-0096-4 CrossRefGoogle Scholar
  14. 14.
    R. Krishna, A.N. Jones, L. McDermott et al., Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy. J. Nucl. Mater. 467, 557–565 (2015). doi: 10.1016/j.jnucmat.2015.10.027 CrossRefGoogle Scholar
  15. 15.
    R.H. Telling, M.I. Heggie, Radiation defects in graphite. Philos. Mag. 87, 4797–4846 (2007). doi: 10.1080/14786430701210023 CrossRefGoogle Scholar
  16. 16.
    C. Karthik, J. Kane, D.P. Butt et al., Neutron irradiation induced microstructural changes in NBG-18 and IG-110 nuclear graphites. Carbon 86, 124–131 (2015). doi: 10.1016/j.carbon.2015.01.036 CrossRefGoogle Scholar
  17. 17.
    S.H. Chi, G.C. Kim, J.H. Hong et al., Changes in the microhardness and Young’s modulus in 2 MeV C+ ion-irradiated IG-110 nuclear graphite. Mater. Sci. Forum 475–479, 1471–1474 (2005). doi: 10.4028/www.scientific.net/MSF.475-479.1471 CrossRefGoogle Scholar
  18. 18.
    H. Bridge, B.T. Kelly, P.T. Nettley, Effect of high-flux fast-neutron irradiation on the physical properties of graphite. Carbon 2, 83–93 (1964). doi: 10.1016/0008-6223(64)90031-4 CrossRefGoogle Scholar
  19. 19.
    L.S. Oliveira, P.A. Greaney, Thermal resistance from irradiation defects in graphite. Comput. Mater. Sci. 103, 68–76 (2015). doi: 10.1016/j.commatsci.2015.03.001 CrossRefGoogle Scholar
  20. 20.
    S.P. Jing, C. Zhang, J. Pu et al., 3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10. Nucl. Sci. Tech. 27, 66 (2016). doi: 10.1007/s41365-016-0071-0 CrossRefGoogle Scholar
  21. 21.
    C.H. Tang, Y.P. Tang, J.G. Zhu et al., Design and manufacture of the fuel element for the 10 MW high temperature gas-cooled reactor. Nucl. Eng. Des. 218, 91–102 (2002). doi: 10.1016/S0029-5493(02)00201-7 CrossRefGoogle Scholar
  22. 22.
    B.E. Mironov, H.M. Freeman, A.P. Brown et al., Electron irradiation of nuclear graphite studied by transmission electron microscopy and electron energy loss spectroscopy. Carbon 83, 106–117 (2015). doi: 10.1016/j.carbon.2014.11.019 CrossRefGoogle Scholar
  23. 23.
    B. Zhang, H.H. Xia, X.J. He et al., Characterization of the effects of 3-MeV proton irradiation on fine-grained isotropic nuclear graphite. Carbon 77, 311–318 (2014). doi: 10.1016/j.carbon.2014.05.034 CrossRefGoogle Scholar
  24. 24.
    Q. Huang, H. Han, R. Liu et al., Saturation of ion irradiation effects in MAX phase Cr2AlC. Acta Mech. 110, 1–7 (2016). doi: 10.1016/j.actamat.2016.03.021 Google Scholar
  25. 25.
    P.R. Goggin, W.N. Reynolds, The annealing of thermal conductivity changes in electron-irradiated graphite. Philos. Mag. 8, 265–272 (1963). doi: 10.1080/14786436308211123 CrossRefGoogle Scholar
  26. 26.
    S. Mrozowski, Thermal conductivity of carbons and graphite. Phys. Rev. 86, 251–252 (1952). doi: 10.1103/PhysRev.86.251.2 CrossRefGoogle Scholar
  27. 27.
    S.H. Chi, G.C. Kim, Comparison of 3 MeV C + ion-irradiation effects between the nuclear graphites made of pitch and petroleum cokes. J. Nucl. Mater. 381, 98–105 (2008). doi: 10.1016/j.jnucmat.2008.08.001 CrossRefGoogle Scholar
  28. 28.
    J.N. Rouzaud, A. Oberlin, C. Beny-Bassez, Carbon films: Structure and microtexture (optical and electron microscopy, Raman spectroscopy). Thin Solid Films 105, 75–96 (1983). doi: 10.1016/0040-6090(83)90333-4 CrossRefGoogle Scholar
  29. 29.
    M.A. Pimenta, A. Marucci, S.A. Empedocles et al., Raman modes of metallic carbon nanotubes. Phys. Rev. B. 58, 16016–16019 (1998). doi: 10.1103/PhysRevB.58.R16016 CrossRefGoogle Scholar
  30. 30.
    S. Reich, C. Thomsen, Raman spectroscopy of graphite. Philos. Trans. R. Soc. London Ser. A 362, 2271–2288 (2004). doi: 10.1098/rsta.2004.1454 CrossRefGoogle Scholar
  31. 31.
    C. Castiglioni, C. Mapelli, F. Negri et al., Origin of the D line in the Raman spectrum of graphite: A study based on Raman frequencies and intensities of polycyclic aromatic hydrocarbon molecules. J. Chem. Phys. 114, 963–974 (2001). doi: 10.1063/1.1329670 CrossRefGoogle Scholar
  32. 32.
    L. Nikiel, P.W. Jagodzinski, Raman spectroscopic characterization of graphites: A re-evaluation of spectra/structure correlation. Carbon 31, 1313–1317 (1993). doi: 10.1016/0008-6223(93)90091-N CrossRefGoogle Scholar
  33. 33.
    F. Tuinstra, Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970). doi: 10.1063/1.1674108 CrossRefGoogle Scholar
  34. 34.
    K. Niwase, Irradiation-induced amorphization of graphite. Phys. Rev. B 52, 5685 (1995). doi: 10.1103/PhysRevB.52.15785 CrossRefGoogle Scholar
  35. 35.
    N. Keisuke, T. Tanabe, Defect structure and amorphization of graphite irradiated by D+ and He+. Mater. Trans. JIM 34, 1111–1121 (1993). doi: 10.2320/matertrans1989.34.1111 CrossRefGoogle Scholar
  36. 36.
    T. Makarova, M. Riccò, D. Pontiroli et al., Ageing effects in nanographite monitored by Raman spectroscopy. Phys. Status Solidi B 245, 2082–2085 (2008). doi: 10.1002/pssb.200879594 CrossRefGoogle Scholar
  37. 37.
    S.J. Yang, J.M. Choe, Y.G. Jin et al., Influence of H+ ion irradiation on the surface and microstructural changes of a nuclear graphite. Fusion Eng. Des. 87, 344–351 (2012). doi: 10.1016/j.fusengdes.2012.02.065 CrossRefGoogle Scholar
  38. 38.
    T. Jawhari, A. Roid, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33, 1561–1565 (1995). doi: 10.1016/0008-6223(95)00117-V CrossRefGoogle Scholar
  39. 39.
    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 61, 14095–14107 (2000). doi: 10.1103/PhysRevB.61.14095 CrossRefGoogle Scholar
  40. 40.
    M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus et al., Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1290 (2007). doi: 10.1039/B613962K CrossRefGoogle Scholar
  41. 41.
    K. Nakamura, M. Kitajima, Ion-irradiation effects on the phonon correlation length of graphite studied by Raman spectroscopy. Phys. Rev. B 45, 78–82 (1992). doi: 10.1103/PhysRevB.45.78 CrossRefGoogle Scholar
  42. 42.
    T. Jawhari, A. Roid, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33, 1561–1565 (1995). doi: 10.1016/0008-6223(95)00117-V CrossRefGoogle Scholar
  43. 43.
    T. Xing, L.H. Li, L. Hou et al., Disorder in ball-milled graphite revealed by Raman spectroscopy. Carbon 57, 515–519 (2013). doi: 10.1016/j.carbon.2013.02.029 CrossRefGoogle Scholar
  44. 44.
    C. Casiraghi, F. Piazza, A.C. Ferrari et al., Bonding in hydrogenated diamond-like carbon by Raman spectroscopy. Diam. Relat. Mater. 14, 1098–1102 (2005). doi: 10.1016/j.diamond.2004.10.030
  45. 45.
    S. Ishiyama, T.D. Burchell, J.P. Strizak et al., The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite. J. Nucl. Mater. 230, 1–7 (1996). doi: 10.1016/0022-3115(96)00005-0 CrossRefGoogle Scholar
  46. 46.
    T.D. Burchell, W.P. Eatherly, The effects of radiation damage on the properties of GraphNOL N3M. J. Nucl. Mater. 179, 205–208 (1991). doi: 10.1016/0022-3115(91)90062-C CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Wei Qi
    • 1
    • 2
  • Zhou-Tong He
    • 1
  • Bao-Liang Zhang
    • 3
  • Xiu-Jie He
    • 4
  • Can Zhang
    • 1
  • Jin-Liang Song
    • 1
  • Guan-Hong Lei
    • 1
  • Xing-Tai Zhou
    • 1
  • Hui-Hao Xia
    • 1
  • Ping Huai
    • 1
  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
  4. 4.Sino-French Institute of Nuclear Engineering and TechnologySun Yat-Sen UniversityZhuhaiChina

Personalised recommendations