Advertisement

Formulae for secondary electron yield from insulators and semiconductors

  • Ai-Gen Xie
  • Min Lai
  • Yu-Lin Chen
  • Yu-Qing Xia
Article

Abstract

The processes and characteristics of secondary electron emission in insulators and semiconductors were studied, and the formulae for the maximum yield (δ m) at W p0m ≤ 800 eV and the secondary electron yield from insulators and semiconductors δ at the primary incident energy of 2 keV ≤ W p0 < 10 keV (δ 2–10) and 10 keV ≤ W p0 ≤ 100 keV (δ 10–100) were deduced. The calculation results were compared with their corresponding experimental data. It is concluded that the deduced formulae can be used to calculate δ 2–100 at W p0m ≤ 800 eV.

Keywords

Maximum secondary electron yield Insulators and semiconductors Secondary electron yield 

References

  1. 1.
    J. Wang, Y. Wang, Y.H. Xu et al., Research on the secondary electron yield of TiZrV-Pd thin film coatings. Vacuum 131, 81–88 (2016). doi: 10.1016/j.vacuum.2016.05.001 CrossRefGoogle Scholar
  2. 2.
    A.G. Xie, L. Wang, L.H. Mu, Formula for maximum secondary electron yield from metals. Surf. Rev. Lett. 22, 1550019 (2015). doi: 10.1142/S0218625X15500195 CrossRefGoogle Scholar
  3. 3.
    A.G. Xie, M. Lai, Y.L. Chen et al., Formulae for secondary electron yield and the ratio of the average number of secondary electrons generated by a single backscattered electron to that generated by a single primary electron. Indian J. Pure Appl. Phys. 53, 298–301 (2015)Google Scholar
  4. 4.
    A.G. Xie, S.R. Xiao, L. Wang, Formulae for the secondary electron yield and total stopping power from 0.8 to 10 keV for metals. Pramana J. Phys. 86, 1127–1141 (2016). doi: 10.1007/s12043-015-1119-0 CrossRefGoogle Scholar
  5. 5.
    S. Michizono, Secondary electron emission from alumina RF windows. IEEE Trans. Electr. Insul. 14, 583–592 (2007). doi: 10.1109/TDEI.2007.369517 CrossRefGoogle Scholar
  6. 6.
    B.P. Song, W.W. Shen, H.B. Mu et al., Measurements of secondary electron emission from dielectric window materials. IEEE Trans. Plasma Sci. 41, 2117–2122 (2013). doi: 10.1109/TPS.2013.2265498 CrossRefGoogle Scholar
  7. 7.
    R. Hoffmann, J.R. Dennison, Measurement methods of electron emission over a full range of sample charging. IEEE Trans. Plasma Sci. 40, 298–304 (2012). doi: 10.1109/TPS.2011.2178251 CrossRefGoogle Scholar
  8. 8.
    Y. Chen, J. Wu, M. Cho et al., Total electron emission yields of typical polymers. in IEEE International Conference on Solid Dielectrics, vol 4 (Bologna, 2013), pp. 752–755. Doi:  10.1109/ICSD.2013.6619757
  9. 9.
    K. Said, G. Damamme, A. Siahmed et al., Dependence of secondary electron emission on surface charging in sapphire and polycrystalline alumina: evaluation of the effective cross sections for recombination and trapping. Appl. Surf. Sci. 297, 45–51 (2014). doi: 10.1016/j.apsusc.2014.01.070 CrossRefGoogle Scholar
  10. 10.
    A. Chvyreva, A.J.M. Pemen, Experimental investigation of electron emission from dielectric surfaces due to primary electron beam: a review. IEEE Trans. Dielectr. Electr. Insul. 21, 2274–2282 (2014). doi: 10.1109/TDEI.2014.004487 CrossRefGoogle Scholar
  11. 11.
  12. 12.
    A.G. Xie, Q.F. Li, Y.Y. Chen et al., The formulae for parameters of the secondary electron yield of insulators from 10 to 30 keV. Mod. Phys. Lett. B 27, 1350238–1350248 (2013). doi: 10.1142/S0217984913502382 CrossRefGoogle Scholar
  13. 13.
    A.G. Xie, S.R. Xiao, H.Y. Wu, Mean escape depth of secondary electrons emitted from semiconductors and insulators. Indian J. Phys. 87, 1093–1097 (2013). doi: 10.1007/s12648-013-0355-8 CrossRefGoogle Scholar
  14. 14.
    A.G. Xie, Y. Zhan, Z.Y. Gao et al., Formula for average energy required to produce a secondary electron in insulator. Chin. Phys. B 22, 057901–057903 (2013). doi: 10.1088/1674-1056/22/5/057901 CrossRefGoogle Scholar
  15. 15.
    A.G. Xie, S.R. Xiao, Y. Zhan et al., Formula for the probability of secondary electrons passing over the surface barrier into vacuum. Chin. Phys. Lett. 29, 117901–117904 (2012). doi: 10.1088/0256-307X/29/11/117901 CrossRefGoogle Scholar
  16. 16.
    R.C. Alig, Secondary-electron-escape probabilities. J. Appl. Phys. 49, 3476–3480 (1978)CrossRefGoogle Scholar
  17. 17.
    H. Seiler, Secondary electron emission in the scanning electron microscope. J. Appl. Phys. 54, R1–R18 (1983). doi: 10.1063/1.332840 CrossRefGoogle Scholar
  18. 18.
    A.G. Xie, H.Y. Wu, J. Xu, Parameters of the secondary electron yield from metal. J. Korean Phys. Soc. 62, 725–730 (2013). doi: 10.3938/jkps.62.725 CrossRefGoogle Scholar
  19. 19.
    A.G. Xie, Z.H. Liu, Y.Q. Xia et al., Maximum secondary electron yield from semiconductors and insulators. Surf. Rev. Lett. 24, 1750045 (2017). doi: 10.1142/S0218625X17500457 CrossRefGoogle Scholar
  20. 20.
    K. Kanaya, H. Kawakatsu, Secondary electron emission due to primary and backscattered electrons. J. Phys. D Appl. Phys. 5, 1727–1742 (1972). doi: 10.1088/0022-3727/5/9/330 CrossRefGoogle Scholar
  21. 21.
    S. Ono, K. Kanaya, The energy dependence of secondary emission based on the range-energy retardation power formula. J. Phys. D Appl. Phys. 12, 619–632 (1979). doi: 10.1088/0022-3727/12/4/019 CrossRefGoogle Scholar
  22. 22.
    W Reuter, in Proceedings of the 6th International Conference on X-ray Optics and Microanalysis (University of Tokyo Press, Tokyo, 1972), p. 121Google Scholar
  23. 23.
    H. Seiler, Some problems of secondary electron emission. Z. Angew. Phys. 22, 249–263 (1967)Google Scholar
  24. 24.
    L. Reimer, H. Drescher, Secondary electron emission of 10–100 keV electrons from transparent films of Al and Au. J. Phys. D Appl. Phys. 10, 805–815 (1977). doi: 10.1088/0022-3727/10/5/022 CrossRefGoogle Scholar
  25. 25.
    H. Drescher, L. Reimer, H. Seidel, Rückstreukoeffizient und Sekundärelektronen-Ausbeute von 10–100 keV-Elektronen und Beziehungen zur Raster-Elektronenmikroskopie. Z. Angewl. Phys. 29, 331–336 (1970)Google Scholar
  26. 26.
    I.M. Bronshtein, S.S. Denisov, Secondary electron emission of aluminum and nickel obliquely incident primary electrons. Sov. Phys. Solid State 9, 731–732 (1967)Google Scholar
  27. 27.
    A.G. Xie, H.F. Zhao, T.B. Wang, Ratio of the mean secondary electron generation of backscattered electrons to primary electrons at high electron energy. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 687–689 (2010). doi: 10.1016/j.nimb.2009.12.026 CrossRefGoogle Scholar
  28. 28.
    A.G. Xie, C.Y. Zhang, K. Zhong, Two contributions to the ratio of the mean secondary electron generation of backscattered electrons to primary electrons at high electron energy. Mod. Phys. Lett. B 28, 1450046 (2014). doi: 10.1142/S0217984914500468 CrossRefGoogle Scholar
  29. 29.
    L. Reimer, Scanning electron microscopy: physics of image formation and microanalysis (Springer, Berlin, 1985), p. 135CrossRefGoogle Scholar
  30. 30.
  31. 31.
    L. Reimer, C. Tolkamp, Measuring the backscattering coefficient and secondary electron yield inside a scanning electron microscope. Scanning 3, 35–39 (1980). doi: 10.1002/sca.4950030105 CrossRefGoogle Scholar
  32. 32.
    D.M. Suszcynsky, J.E. Borovsky, C.K. Goertz, Secondary-electron yields of solar-system ices. J. Geophys. Res. 97, 2611–2619 (1992). doi: 10.1029/91JE02944 CrossRefGoogle Scholar
  33. 33.
    J.B. Johnson, K.G. McKay, Secondary electron emission from Germanium. Phys. Rev. 93, 668–672 (1954). doi: 10.1103/PhysRev.93.668 CrossRefGoogle Scholar
  34. 34.
    R. Böngeler, U. Golla, M. Kässens et al., Electron-specimen interactions in low-voltage scanning electron microscopy. Scanning 15, 1–18 (1993). doi: 10.1002/sca.4950150102 CrossRefGoogle Scholar
  35. 35.
    P.H. Dawson, Secondary electron emission yields of some ceramics. J. Appl. Phys. 37, 3644–3645 (1966)CrossRefGoogle Scholar
  36. 36.
    E.A. Flinn, Enhanced secondary electron emission yield from doped vanadate-phosphate glasses. J. Appl. Phys. 51, 3441–3443 (1980). doi: 10.1063/1.326320 CrossRefGoogle Scholar
  37. 37.
    A. van der Ziel, Solid State Physical Electronics, 2nd edn. (Prentice-Hall, Englewood Cliffs, 1968), p. 172Google Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic EngineeringNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations