Production of heavy neutron-rich nuclei with radioactive beams in multinucleon transfer reactions

Abstract

The production mechanism of heavy neutron-rich nuclei is investigated by using the multinucleon transfer reactions of \(^{136,148}{\hbox {Xe}}+^{208}\)Pb and \(^{238}{\hbox {U}}+^{208}\)Pb in the framework of a dinuclear system model. The evaporation residual cross sections of target-like fragments are studied with the reaction system \(^{148}{\hbox {Xe}}+^{208}\)Pb at near barrier energies. The results show that the final isotopic production cross sections in the neutron-deficient side are very sensitive to incident energy while it is not sensitive in the neutron-rich side. Comparing the isotopic production cross sections for the reactions of \(^{208}\)Pb bombarded with stable and radioactive projectiles, we find that neutron-rich radioactive beams can significantly increase the production cross sections of heavy neutron-rich nuclei.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    C. Li, F. Zhang, J.J. Li et al., Multinucleon transfer in the \(^{136}{\rm Xe}+^{208}{\rm Pb}\) reaction. Phys. Rev. C 93, 014618 (2016). doi:10.1103/PhysRevC.93.014618

    Article  Google Scholar 

  2. 2.

    J.S. Barrett, W. Loveland, R. Yanez et al., \(^{136}{\rm Xe}+^{208}{\rm Pb}\) reaction: A test of models of multinucleon transfer reactions. Phys. Rev. C 91, 064615 (2015). doi:10.1103/PhysRevC.91.064615

    Article  Google Scholar 

  3. 3.

    V.I. Zagrebaev, W. Greiner, Production of new heavy isotopes in low-energy multinucleon transfer reactions. Phys. Rev. Lett. 101, 122701 (2008). doi:10.1103/PhysRevLett.101.122701

    Article  Google Scholar 

  4. 4.

    W. Loveland, A.M. Vinodkumar, D. Peterson et al., Synthesis of heavy nuclei using damped collisions: a test. Phys. Rev. C 83, 044610 (2011). doi:10.1103/PhysRevC.83.044610

    Article  Google Scholar 

  5. 5.

    V.I. Zagrebaev, W. Greiner, Production of heavy trans-target nuclei in multinucleon transfer reactions. Phys. Rev. C 87, 034608 (2013). doi:10.1103/PhysRevC.87.034608

    Article  Google Scholar 

  6. 6.

    V.I. Zagrebaev, W. Greiner, Production of heavy and superheavy neutron-rich nuclei in transfer reactions. Phys. Rev. C 83, 044618 (2011). doi:10.1103/PhysRevC.83.04461

    Article  Google Scholar 

  7. 7.

    L. Zhu, J. Su, F.S. Zhang, Influence of the neutron numbers of projectile and target on the evaporation residue cross sections in hot fusion reactions. Phys. Rev. C 93, 064610 (2016). doi:10.1103/PhysRevC.93.064610

    Article  Google Scholar 

  8. 8.

    K. Zhao, Z.X. Li, N. Wang et al., Production mechanism of neutron-rich transuranium nuclei in \(^{238}{\rm U}+^{238}{\rm U}\) collisions at near-barrier energies. Phys. Rev. C 92, 024613 (2015). doi:10.1103/PhysRevC.92.024613

    Article  Google Scholar 

  9. 9.

    Y.X. Watanabe, Y.H. Kim, S.C. Jeong et al., Pathway for the production of neutron-rich isotopes around the \(N=126\) shell closure. Phys. Rev. Lett. 115, 172503 (2015). doi:10.1103/PhysRevLett.115.172503

    Article  Google Scholar 

  10. 10.

    K. Sekizawa, K. Yabana, Time-dependent Hartree–Fock calculations for multinucleon transfer processes in \({}^{40,48}\text{ Ca }+{}^{124}\)Sn, \({}^{40}\text{ Ca }+{}^{208}\)Pb, and \({}^{58}\text{ Ni }+{}^{208}\)Pb reactions. Phys. Rev. C 88, 014614 (2013). doi:10.1103/PhysRevC.88.014614

    Article  Google Scholar 

  11. 11.

    K. Sekizawa, K. Yabana, Time-dependent Hartree–Fock calculations for multinucleon transfer and quasifission processes in the \(^{64}\text{ Ni }+^{238}\text{ U }\) reaction. Phys. Rev. C 93, 054616 (2016). doi:10.1103/PhysRevC.93.054616

    Article  Google Scholar 

  12. 12.

    C.C. Guo, J. Su, F.S. Zhang, Comparison between nuclear thermometers in central Xe \(+\) Sn collision. Nucl. Sci. Tech. 24, 050513 (2013). doi:10.13538/j.1001-8042/nst.2013.05.013

    Google Scholar 

  13. 13.

    C.W. Ma, C.Y. Qiao, T.T. Ding et al., Temperature of intermediate mass fragments in simulated \(^{40}\)Ca + \(^{40}\)Ca reactions around the Fermi energies by AMD model. Nucl. Sci. Tech. 27, 111 (2016). doi:10.1007/s41365-016-0112-8

    Article  Google Scholar 

  14. 14.

    X.F. Li, D.Q. Fang, Y.G. Ma, Determination of the neutron skin thickness from interaction cross section and charge-changing cross section for B, C, N, O, F isotopes. Nucl. Sci. Tech. 27, 71 (2016). doi:10.1007/s41365-016-0064-z

    Article  Google Scholar 

  15. 15.

    R. Wang, L.W. Chen, Positioning the neutron drip line and the r-process paths in the nuclear landscape. Phys. Rev. C 92, 031303(R) (2015). doi:10.1103/PhysRevC.92.031303

    Article  Google Scholar 

  16. 16.

    J. Kurcewicz, F. Farinon, H. Geissel et al., Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS. Phys. Lett. B 717, 371 (2012). doi:10.1016/j.physletb.2012.09.021

    Article  Google Scholar 

  17. 17.

    O.B. Tarasov, D.J. Morrissey, A.M. Amthor et al., Evidence for a change in the nuclear mass surface with the discovery of the most neutron-rich nuclei with \(17\le Z\le 25\). Phys. Rev. Lett. 102, 142501 (2009). doi:10.1103/PhysRevLett.102.142501

    Article  Google Scholar 

  18. 18.

    J.M. D’Auria, A review of radioactive beam facilities in the world. Nucl. Instrum. Methods B 99, 330 (1995). doi:10.1016/0168-583X(95)80083-2

    Article  Google Scholar 

  19. 19.

    T. Motobayashi, H. Sakurai, Research with fast radioactive isotope beams at RIKEN. Prog. Theor. Exp. Phys. 2012, 03C001 (2012). doi:10.1093/ptep/pts059

    Article  Google Scholar 

  20. 20.

    W. Loveland, Synthesis of transactinide nuclei using radioactive beams. Phys. Rev. C 76, 014612 (2007). doi:10.1103/PhysRevC.76.014612

    Article  Google Scholar 

  21. 21.

    M.H. Mun, G.G. Adamian, N.V. Antonenko et al., Toward neutron-rich nuclei via transfer reactions with stable and radioactive beams. Phys. Rev. C 91, 054610 (2015). doi:10.1103/PhysRevC.91.054610

    Article  Google Scholar 

  22. 22.

    J.C. Yang, J.W. Xia, G.Q. Xiao et al., High intensity heavy ion accelerator facility (HIAF) in China. Nucl. Instrum. Methods B 317, 263 (2013). doi:10.1016/j.nimb.2013.08.046

    Article  Google Scholar 

  23. 23.

    L.J. Mao, J.C. Yang, J.W. Xia et al., Electron cooling system in the booster synchrotron of the HIAF project. Nucl. Instrum. Methods A 786, 91 (2015). doi:10.1016/j.nima.2015.03.052

    Article  Google Scholar 

  24. 24.

    N. Wang, E.G. Zhao, W. Scheid et al., Theoretical study of the synthesis of superheavy nuclei with \(Z=119\) and 120 in heavy-ion reactions with trans-uranium targets. Phys. Rev. C 85, 041601(R) (2012). doi:10.1103/PhysRevC.85.041601

    Article  Google Scholar 

  25. 25.

    Z.Q. Feng, G.M. Jin, F. Fu et al., Production cross sections of superheavy nuclei based on dinuclear system model. Nucl. Phys. A 771, 50 (2006). doi:10.1016/j.nuclphysa.2006.03.002

    Article  Google Scholar 

  26. 26.

    X.J. Bao, Y. Gao, J.Q. Li et al., Possibilities for synthesis of new isotopes of superheavy nuclei in cold fusion reactions. Phys. Rev. C 93, 044615 (2016). doi:10.1103/PhysRevC.93.044615

    Article  Google Scholar 

  27. 27.

    Z.Q. Feng, G.M. Jin, J.Q. Li, Production of heavy isotopes in transfer reactions by collisions of \(^{238}\text{ U }+^{238}\)U. Phys. Rev. C 80, 067601 (2009). doi:10.1103/PhysRevC.80.067601

    Article  Google Scholar 

  28. 28.

    M.H. Mun, G.G. Adamian, N.V. Antonenko et al., Production cross section of neutron-rich isotopes with radioactive and stable beams. Phys. Rev. C 89, 034622 (2014). doi:10.1103/PhysRevC.89.034622

    Article  Google Scholar 

  29. 29.

    L. Zhu, Z.Q. Feng, F.S. Zhang, Production of heavy neutron-rich nuclei in transfer reactions within the dinuclear system model. J. Phys. G 42, 085102 (2015). doi:10.1088/0954-3899/42/8/085102

    Article  Google Scholar 

  30. 30.

    S. Ayik, B. Schürmann, W. Nörenberg, Microscopic transport theory of heavy-ion collisions I. Basic relations and transport coefficients for symmetric fragmentation. Z. Phys. A 277, 299 (1976). doi:10.1007/BF01415605

    Article  Google Scholar 

  31. 31.

    Z.Q. Feng, G.M. Jin, J.Q. Li et al., Formation of superheavy nuclei in cold fusion reactions. Phys. Rev. C 76, 044606 (2007). doi:10.1103/PhysRevC.76.044606

    Article  Google Scholar 

  32. 32.

    G.G. Adamian, N.V. Antonenko, W. Scheid, Characteristics of quasifission products within the dinuclear system model. Phys. Rev. C 68, 034601 (2003). doi:10.1103/PhysRevC.68.034601

    Article  Google Scholar 

  33. 33.

    Z.Q. Feng, Production of neutron-rich isotopes around \(N = 126\) in multinucleon transfer reactions. Phys. Rev. C 95, 024615 (2017). doi:10.1103/PhysRevC.95.024615

    Article  Google Scholar 

  34. 34.

    G.G. Adamian, N.V. Antonenko, V.V. Sargsyan et al., Possibility of production of neutron-rich Zn and Ge isotopes in multinucleon transfer reactions at low energies. Phys. Rev. C 81, 024604 (2010). doi:10.1103/PhysRevC.81.024604

    Article  Google Scholar 

  35. 35.

    R.J. Charity, M.A. McMahan, G.J. Wozniak et al., Systematics of complex fragment emission in niobium-induced reactions. Nucl. Phys. A 483, 371 (1988). doi:10.1016/0375-9474(88)90542-8

    Article  Google Scholar 

  36. 36.

    W. Królas, R. Broda, B. Fornal et al., Dynamical deformation of nuclei in deep-inelastic collisions: a gamma coincidence study of \(^{130}\)Te + 275 MeV \(^{64}\)Ni and \(^{208}\)Pb + 345 MeV \(^{58}\)Ni heavy ion reactions. Nucl. Phys. A 832, 170 (2010). doi:10.1016/j.nuclphysa.2009.10.159

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Feng-Shou Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China under Grants Nos. 11635003, 11025524 and 11161130520; the National Basic Research Program of China under Grant No. 2010CB832903; the European Commission’s 7th Framework Programme (Fp7-PEOPLE-2010-IRSES) under Grant Agreement Project No. 269131; the Project funded by China Postdoctoral Science Foundation (Grant No. 2016M600956).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wen, P., Li, J. et al. Production of heavy neutron-rich nuclei with radioactive beams in multinucleon transfer reactions. NUCL SCI TECH 28, 110 (2017). https://doi.org/10.1007/s41365-017-0266-z

Download citation

Keywords

  • Multinucleon transfer reactions
  • DNS model
  • Heavy-ion collisions
  • Neutron-rich nuclei