Advertisement

Biological effects of human lung cells MRC-5 in CBCT positioning for image-guided radiotherapy

  • Chu-Feng Jin
  • Hui Liu
  • Wen-Yi Li
  • Rui-Fen Cao
Article

Abstract

Image-guided radiotherapy (IGRT) provides precise positioning for the tumor target, but it may bring extra irradiation dose in the target positioning with a cone beam CT (CBCT) which has been increasingly used in IGRT. In this work, we focused on biological effects of the low-dose irradiation in IGRT, which have not been considered so far. Primary human fibroblasts cells from the lung and MRC-5 were irradiated by a CBCT. DNA double-strand breaks (γ-H2AX foci) and micronucleus frequency of the irradiated samples were analyzed. Compared to the control, the γ-H2AX foci yields of the samples irradiated to 16 mGy increased significantly, and the micronuclei rate of the samples irradiated for 3 days increased notably. The dose by imaging guidance device can be genotoxic to normal tissue cells, suggesting a potential risk of a secondary cancer. The effects, if confirmed by clinical studies, should be considered prudentially in designing IGRT treatment plans for the radiosensitive population, especially for children.

Keywords

Image-guided radiotherapy Cone beam CT Imaging irradiation Biological effects Secondary cancer 

Notes

Acknowledgements

The members of FDS Team have offered a large amount of help to this work. We thank Professor Lijun WU of Hefei Institutes of Physical Science, Chinese Academy of Sciences, for providing the MRC-5 cell line.

References

  1. 1.
    R. Peto, The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J. Natl Cancer Inst. 66, 1191–1308 (1981). doi: 10.1007/978-1-4757-1117-2_30 Google Scholar
  2. 2.
    M. Charles, UNSCEAR report 2000: sources and effects of ionizing radiation. J. Radiol. Prot. 21(1), 83–85 (2001). doi: 10.1088/0952-4746/21/1/609 CrossRefGoogle Scholar
  3. 3.
    A.B. De Gonzalez, A. risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363, 345–351 (2004). doi: 10.1016/S0140-6736(04)15433-0 CrossRefGoogle Scholar
  4. 4.
    D.J. Brenner, C.D. Elliston, E.J. Hall et al., Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am. J. Roentgenol. 176(2), 289–296 (2001). doi: 10.2214/ajr.176.2.1760289 CrossRefGoogle Scholar
  5. 5.
    R.F. Cao, Y.C. Wu, X. Pei et al., Multi-objective optimization of inverse planning for accurate radiotherapy. Chin. Phys. C 35(3), 313–317 (2011). doi: 10.1088/1674-1137/35/3/019 CrossRefGoogle Scholar
  6. 6.
    Y.C. Wu, G.L. Li, S.X. Tao et al., Research and development of an accurate/advanced radiation therapy system (ARTS). Chin. J. Med. Phys. 22(6), 683–690 (2006). doi: 10.3969/j.issn.1005-202X.2005.06.001 Google Scholar
  7. 7.
    D.A. Jaffray, Emergent technologies for 3-dimensional image-guided radiation delivery. Sem. Radiat. Oncol. 15(3), 208–216 (2005). doi: 10.1016/j.semradonc.2005.01.003 CrossRefGoogle Scholar
  8. 8.
    X. Lei, B. Thorndyke et al., Overview of image-guided radiation therapy. Med. Dosim. 31(2), 91–112 (2006). doi: 10.1016/j.meddos.2005.12.004 CrossRefGoogle Scholar
  9. 9.
    G.T.Y. Chen, G.C. Sharp, S. Mori, A review of image-guided radiotherapy. Radiol. Phys. Technol. 2(1), 1–12 (2009). doi: 10.1007/s12194-008-0045-y CrossRefGoogle Scholar
  10. 10.
    J.R. Perks, J. Lehmann, A.M. Chen et al., Comparison of peripheral dose from image-guided radiation therapy (IGRT) using kV cone beam CT to intensity-modulated radiation therapy (IMRT). Radiother. Oncol. 89(9), 304–310 (2008). doi: 10.1016/j.radonc.2008.07.026 CrossRefGoogle Scholar
  11. 11.
    A. Amer, T. Marchant, J. Sykes et al., Imaging doses from the Elekta Synergy X-ray cone beam CT system. Br. J. Radiol. 80(954), 476–482 (2007). doi: 10.1259/bjr/80446730 CrossRefGoogle Scholar
  12. 12.
    E.P. Rogakou, D.R. Pilch, A.H. Orr et al., DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273(10), 5858–5868 (1998). doi: 10.1259/bjr/80446730 CrossRefGoogle Scholar
  13. 13.
    K. Rothkamm, S. Balroop, J. Shekhdar et al., Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure 1. Radiology 242(1), 244–251 (2007). doi: 10.1148/radiol.2421060171 CrossRefGoogle Scholar
  14. 14.
    M. Fenech, A.A. Morley, Measurement of micronuclei in lymphocytes. Mutat. Res./Environ. Mutagen. Relat. Subj. 147(1–2), 29–36 (1985)Google Scholar
  15. 15.
    M. Fenech, The in vitro micronucleus technique [Review]. Mutat. Res. 455, 81–95 (2000). doi: 10.1016/0165-1161(85)90015-9 CrossRefGoogle Scholar
  16. 16.
    M.K. Islam, T.G. Purdie, B.D. Norrlinger et al., Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. Med. Phys. 33(6), 1573–1582 (2006). doi: 10.1118/1.2198169 CrossRefGoogle Scholar
  17. 17.
    G.J. Heyes, A.J. Mill, M.W. Charles, Enhanced biological effectiveness of low energy X-rays and implications for the UK breast screening programme. Br. J. Raiol. 79(939), 195–200 (2006). doi: 10.1259/bjr/18449523 CrossRefGoogle Scholar
  18. 18.
    B. Marples, M.C. Joiner, The response of Chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole cell population. Radiat. Res. 133(1), 41–51 (1993). doi: 10.2307/3578255 CrossRefGoogle Scholar
  19. 19.
    M. Simonsson, F. Qvarnström, J. Nyman et al., Low-dose hypersensitive gammaH2AX response and infrequent apoptosis in epidermis from radiotherapy patients. Radiother. Oncol. 88(3), 388–397 (2008). doi: 10.1016/j.radonc.2008.04.017 CrossRefGoogle Scholar
  20. 20.
    M.J. Murphy, J. Balter, S. Balter et al., The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. Med. Phys. 34(10), 4041–4063 (2007). doi: 10.1118/1.2775667 CrossRefGoogle Scholar
  21. 21.
    E.G. Aird, Second cancer risk, concomitant exposures and IRMER(2000). Br. J. Radiol. 77(924), 983–985 (2004). doi: 10.1259/bjr/56613233 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • Chu-Feng Jin
    • 1
    • 2
  • Hui Liu
    • 2
  • Wen-Yi Li
    • 2
  • Rui-Fen Cao
    • 2
  1. 1.School of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety TechnologyChinese Academy of SciencesHefeiChina

Personalised recommendations