Advertisement

Calculation of photon shielding properties for some neutron shielding materials

  • A. M. El-Khayatt
Article

Abstract

The objective of the present study is to calculate photon shielding parameters for seven polyethylene-based neutron shielding materials. The parameters include the effective atomic number (Z eff), the effective electron density (N eff) for photon interaction and photon energy absorption, and gamma-ray kerma coefficient (k γ). The calculations of Z eff are presented as a single-valued and are energy dependent. While Z eff values were calculated via simplistic power-law method, the energy-dependent Z eff for photon interaction (Z PI-eff) and photon energy absorption (Z PEA-eff ) are obtained via the direct method for energy ranges of 1 keV–100 GeV and 1 keV–20 MeV, respectively. The k γ coefficients are calculated by summing the contributions of the major partial photon interactions for energy range of 1 keV–100 MeV. In most cases, data are presented relative to pure polyethylene to allow direct comparison over a range of energy. The results show that combination of polyethylene with other elements such as lithium and aluminum leads to neutron shielding material with more ability to absorb neutron and γ-rays. Also, the kerma coefficient first increases with Z of the additive element at low photon energies and then converges with pure polyethylene at energies greater than 100 keV.

Keywords

Neutron shielding materials Effective atomic number Kerma coefficient γ-rays 

References

  1. 1.
    I. Akkurt, A.M. El-Khayatt, Effective atomic number and electron density of marble concrete. J. Radioanal. Nucl. Chem. 259(1), 633–638 (2013). doi: 10.1016/j.anucene.2013.04.021 CrossRefGoogle Scholar
  2. 2.
    E. Yılmaz, H. Baltas, E. Kırısa et al., Gamma-ray and neutron shielding properties of some concrete materials. Ann. Nucl. Energy 38(10), 128–132 (2011). doi: 10.1016/j.anucene.2011.06.011 Google Scholar
  3. 3.
    M. Kurudirek, Radiation shielding and effective atomic number studies in different types of shielding concretes, lead base and non-lead base glass systems for total electron interaction: a comparative study. Nucl. Eng. Des. 280, 440 (2014). doi: 10.1016/j.nucengdes.2014.09.020 CrossRefGoogle Scholar
  4. 4.
    N. Chanthima, J. Kaewkhao, P. Limsuwan, Study of photon interactions and shielding properties of silicate glasses containing Bi2O3, BaO and PbO in the energy region of 1 keV to 100 GeV. Ann. Nucl. Energy 41, 119 (2012). doi: 10.1016/j.anucene.2011.10.021 CrossRefGoogle Scholar
  5. 5.
    S. Ruengsri, S. Insiripong, N. Sangwaranatee et al., Development of barium borosilicate glasses for radiation shielding materials using rice husk ash as a silica source. Prog. Nucl. Energy 83, 99 (2015). doi: 10.1016/j.pnucene.2015.03.006 CrossRefGoogle Scholar
  6. 6.
    A.M. El-Khayatt, A.M. Ali, V.P. Singh, Photon attenuation coefficients of heavy-metal oxide glasses by MCNP, XCOM program and experimental data: a comparison study. Nucl. Instrum. Methods Phys. Res. A 735, 207–212 (2014). doi: 10.1016/j.nima.2013.09.027 CrossRefGoogle Scholar
  7. 7.
    N. Chanthima, J. Kaewkhao, Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV. Ann. Nucl. Energy 55, 23 (2013). doi: 10.1016/j.anucene.2012.12.011 CrossRefGoogle Scholar
  8. 8.
    A.M. El-Khayatt, M.A. Al-Rajhi, Analysis of some lunar soil and rocks samples in terms of photon interaction and photon energy absorption. Adv. Space Res. 55(7), 1816–1822 (2015). doi: 10.1016/j.asr.2015.01.020 CrossRefGoogle Scholar
  9. 9.
    V.P. Singh, N.M. Badiger, A.M. El-Khayatt, Study on gamma-ray exposure buildup factors and fast neutron shielding properties of some building materials. Radiat. Eff. Defects Solids 169(6), 547–559 (2014). doi: 10.1080/10420150.2014.905942 CrossRefGoogle Scholar
  10. 10.
    P. Limkitjaroenporn, J. Kaewkhao, S. Asavavisithchai, Determination of mass attenuation coefficients and effective atomic numbers for Inconel 738 alloy for different energies obtained from Compton scattering. Ann. Nucl. Energy 53, 64 (2013). doi: 10.1016/j.anucene.2012.08.020 CrossRefGoogle Scholar
  11. 11.
    A.M. El-Khayatt, A.M. Ali, V.P. Singh et al., Determination of mass attenuation coefficient of low-Z dosimetric materials. Radiat. Eff. Defects Solids 169(12), 1038–1044 (2014). doi: 10.1080/10420150.2014.988626 CrossRefGoogle Scholar
  12. 12.
    M. Kurudirek, Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications. Radiat. Phys. Chem. 1021, 39 (2014). doi: 10.1016/j.radphyschem.2014.04.033 Google Scholar
  13. 13.
    M. Kurudirek, Effective atomic number, energy loss and radiation damage studies in some materials commonly used in nuclear applications for heavy charged particles such as H, C, Mg, Fe, Te, Pb and U. Radiat. Phys. Chem. 122, 15 (2016). doi: 10.1016/j.radphyschem.2016.01.012 CrossRefGoogle Scholar
  14. 14.
    P. Limkitjaroenporn, J. Kaewkhao, Gamma-rays attenuation of zircons from Cambodia and South Africa at different energies: a new technique for identifying the origin of gemstone. Radiat. Phys. Chem. 103, 67 (2014). doi: 10.1016/j.radphyschem.2014.05.035 CrossRefGoogle Scholar
  15. 15.
    A.M. El-Khayatt, H.R. Vega-Carrillo, Photon and neutron kerma coefficients for polymer gel dosimeters. Nucl. Instrum. Methods Phys. Res. A 792, 6–10 (2015). doi: 10.1016/j.nima.2015.04.033 CrossRefGoogle Scholar
  16. 16.
    J.E. Turner, Atoms, Radiation, and Radiation Protection, 3rd edn. (WILEY GmbH & Co. KGaA, Weinheim, 2007)CrossRefGoogle Scholar
  17. 17.
    ICRU Report 84, Radiation Quantities and Units (International Commission on Radiation Units and Measurements, Bethesda, MD, 1962)Google Scholar
  18. 18.
    L. Zhang, M.A. Abdou, Kerma factor evaluation and its application in nuclear heating experiment analysis. Fusion Eng. Des. 36, 479–503 (1997). doi: 10.1016/S0920-3796(96)00704-1 CrossRefGoogle Scholar
  19. 19.
    R.S. Caswell, J.J. Coyne, M.L. Randolph, Int. J. Appl. Radiat. Isot. 33(11), 1227–1262 (1982). doi: 10.1016/0020-708X(82)90246-0 CrossRefGoogle Scholar
  20. 20.
    M.A. Abdou, C.W. Maynard, Calculational methods for nuclear heating-part I: theoretical and computational algorithms. Nucl. Sci. Eng. 56(4), 360–380 (1975)Google Scholar
  21. 21.
    ICRU Report 85, Fundamental quantities and units for ionizing radiation (revised). J. ICRU 11(1), 22 (2011). doi: 10.1093/jicru/ndr009
  22. 22.
    H.C. Claiborne, M. Solomito, J.J. Ritts, Heat generation by neutrons in some moderating and shielding materials. Nucl. Eng. Des. 15, 232–236 (1971). doi: 10.1016/0029-5493(71)90065-3 CrossRefGoogle Scholar
  23. 23.
    M. Faiz Khan, The Physics of Radiation Therapy (Williams and Wilkins Publishers, Baltimore, MD, 1994)Google Scholar
  24. 24.
    G.E. Hine, Secondary electron emission and effective atomic numbers. Nucleonics 10(1), 9–15 (1952). CODEN: NUCLAM; ISSN: 0096-6207Google Scholar
  25. 25.
    C.M. Tsaï, Z.H. Cho, Physics of contrast mechanism and averaging effect of linear attenuation coefficients in a computerized transverse axial tomography (CTAT) transmission scanner. Phys. Med. Biol. 21(4), 544–559 (1976). doi: 10.1088/0031-9155/21/4/006 CrossRefGoogle Scholar
  26. 26.
    P. Sellakumar, E.J.J. Samuel, S.S. Supe, Water equivalence of polymer gel dosimeters. Radiat. Phys. Chem. 76(7), 1108–1115 (2007). doi: 10.1016/j.radphyschem.2007.03.003 CrossRefGoogle Scholar
  27. 27.
    P. Puumalainen, H. Olkkonen, P. Sikanen, Assessment of fat content of liver by a photon scattering technique. Int. J. Appl. Radiat. Isot. 28(9), 785–787 (1977). doi: 10.1016/0020-708X(77)90110-7 CrossRefGoogle Scholar
  28. 28.
    S. Manninen, T. Pitkanen, S. Koikkalainen, T. Paakkari, Determination of the effective atomic number using elastic and inelastic scattering of γ-rays. Int. J. Appl. Radiat. Isot. 35(10), 965–968 (1984). doi: 10.1016/0020-708X(84)90212-6 CrossRefGoogle Scholar
  29. 29.
    R.C. Murty, Effective atomic numbers of heterogeneous materials. Nature 207, 398–399 (1965). doi: 10.1038/207398a0 CrossRefGoogle Scholar
  30. 30.
    S.R. Manohara, S.M. Hanagodimath, K.S. Thind et al., The effective atomic number revisited in the light of modern photon-interaction cross-section databases. Appl. Radiat. Isot. 68(4–5), 784–787 (2010). doi: 10.1016/j.apradiso.2009.09.047 CrossRefGoogle Scholar
  31. 31.
    A.M. El-Khayatt, NXcom—a program for calculating attenuation coefficients of fast neutrons and gamma-rays. Ann. Nucl. Energy 38(1), 128–132 (2011). doi: 10.1016/j.anucene.2010.08.003 CrossRefGoogle Scholar
  32. 32.
    J.H. Hubbell, S.M. Seltzer, Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest NISTIR 5632 (National Institute of Standards and Technology, Gaithersburg, 1995)Google Scholar
  33. 33.
    F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry (Wiley, New York, 1986)CrossRefGoogle Scholar
  34. 34.
    J.H. Hubbell, Review of photon interaction cross section data in the medical and biological context. Phys. Med. Biol. 44, R1 (1999). doi: 10.1088/0031-9155/44/1/001 CrossRefGoogle Scholar
  35. 35.
    Bladewerx Company, http://www.shieldwerx.com

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Physics Department, College of ScienceAl Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
  2. 2.Reactor Physics DepartmentNRC, Atomic Energy AuthorityCairoEgypt

Personalised recommendations