A study on compatibility of experimental effective atomic numbers with those predicted by ZXCOM

  • Önder Eyecioğlu
  • A. M. El-Khayatt
  • Yaşar Karabul
  • Orhan İçelli
Article

Abstract

In this study, effective atomic numbers (Z eff) of materials determined at different experimental conditions by measuring the elastic-to-inelastic γ-ray scattering ratios are compared to ZXCOM predictions. It also presents the experimental data obtained via the transmission technique. The agreement and disagreement between ZXCOM and experimental values are investigated. The theoretical basics of determining Z eff by scattering mode are outlined. The study shows that choosing appropriate experimental conditions can provide a good compatibility between the experimental results and theoretical ZXCOM calculations.

Keywords

Effective atomic number ZXCOM Rayleigh scattering Compton scattering 

References

  1. 1.
    K. Singh, R. Kaur, V. Kumar, Study of effective atomic numbers and mass attenuation coefficients in some compounds. Radiat. Phys. Chem. 47, 535–541 (1996). doi: 10.1016/0969-806X(95)00057-5 CrossRefGoogle Scholar
  2. 2.
    S.R. Manohara, S.M. Hanagodimath, L. Gerward, Studies on effective atomic number, electron density and kerma for some fatty acids and carbohydrates. Phys. Med. Biol. 53, N377–N386 (2008). doi: 10.1088/0031-9155/53/20/N01 CrossRefGoogle Scholar
  3. 3.
    V. Manjunathaguru, T.K. Umesh, Simple parametrization of photon mass energy absorption coefficients of H-, C-, N- and O-based samples of biological interest in the energy range 200–1500 keV. Pramana 72, 375–387 (2009). doi: 10.1007/s12043-009-0033-8 CrossRefGoogle Scholar
  4. 4.
    A.M. El-Khayatt, İ. Akkurt, Photon interaction, energy absorption and neutron removal cross section of concrete including marble. Ann. Nucl. Energy 60, 8–14 (2013). doi: 10.1016/j.anucene.2013.04.021 CrossRefGoogle Scholar
  5. 5.
    L. Gerward, N. Guilbert, K. Bjorn Jensen et al., X-ray absorption in matter. Reengineering XCOM. Radiat. Phys. Chem. 60, 23–24 (2001). doi: 10.1016/S0969-806X(00)00324-8 CrossRefGoogle Scholar
  6. 6.
    M.J. Berger, J.H. Hubbell, XCOM: Photon Cross Sections on a Personal Computer NBSIR 87-3597 (1987). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/19/009/19009871.pdf
  7. 7.
    R. Nowotny, XMuDat: Photon Attenuation Data on PC, in IAEA-NDS-195 (1998). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/30/022/30022813.pdf
  8. 8.
    A.M. El-Khayatt, NXcom—a program for calculating attenuation coefficients of fast neutrons and gamma-rays. Ann. Nucl. Energy 38, 128–132 (2011). doi: 10.1016/j.anucene.2010.08.003 CrossRefGoogle Scholar
  9. 9.
    T.K. Kumar, K.V. Reddy, Effective atomic numbers for materials of dosimetric interest. Radiat. Phys. Chem. 50, 545–553 (1997). doi: 10.1016/S0969-806X(97)00089-3 CrossRefGoogle Scholar
  10. 10.
    H. Singh, K. Singh, G. Sharma et al., Barium and calcium borate glasses as shielding materials for X-rays and gamma-rays. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 44, 5–8 (2003)Google Scholar
  11. 11.
    H. Singh, K. Singh, L. Gerward et al., ZnO–PbO–B2O3 glasses as gamma-ray shielding materials. Nucl. Instrum. Methods Phys. Res. Sect. B 207, 257–262 (2003). doi: 10.1016/S0168-583X(03)00462-2
  12. 12.
    K. Singh, H. Singh, G. Sharma et al., Gamma-ray shielding properties of CaO–SrO–B2O3 glasses. Radiat. Phys. Chem. 72, 225–228 (2005). doi: 10.1016/j.radphyschem.2003.11.010
  13. 13.
    I. Akkurt, A.M. El-Khayatt, Effective atomic number and electron density of marble concrete. J. Radioanal. Nucl. Chem. 295, 633–638 (2013). doi: 10.1007/s10967-012-2111-5 CrossRefGoogle Scholar
  14. 14.
    V.P. Singh, N.M. Badiger, N. Kucuk, Determination of effective atomic numbers using different methods for some low-Z materials. J. Nucl. Chem. (2014). doi: 10.1155/2014/725629 Google Scholar
  15. 15.
    R. Shivaramu, L. Vijayakumar, N. Rajasekaran, Ramamurthy, effective atomic numbers for photon energy absorption of some low-Z substances of dosimetric interest. Radiat. Phys. Chem. 62, 371–377 (2001). doi: 10.1016/S0969-806X(01)00221-3 CrossRefGoogle Scholar
  16. 16.
    V.P. Singh, N.M. Badiger, Effective atomic numbers of some tissue substitutes by different methods: a comparative study. J. Med. Phys. 39, 24–31 (2014). doi: 10.4103/0971-6203.125489 CrossRefGoogle Scholar
  17. 17.
    H.P. Schätzler, Basic aspects on the use of elastic and inelastic scattered gamma radiation for the determination of binary systems with effective atomic numbers of less than 10. Int. J. Appl. Radiat. Isot. 30, 115–121 (1979). doi: 10.1016/0020-708X(79)90143-1 CrossRefGoogle Scholar
  18. 18.
    S. Manninen, T. Pitkänen, S. Koikkalainen et al., Study of the ratio of elastic to inelastic scattering of photons. Int. J. Appl. Radiat. Isot. 35, 93–98 (1984). doi: 10.1016/0020-708X(84)90190-X CrossRefGoogle Scholar
  19. 19.
    P. Duvauchelle, G. Peix, D. Babot, Effective atomic number in the Rayleigh to Compton scattering ratio. Nucl. Instrum. Methods Phys. Res. Sect. B 155, 221–228 (1999). doi: 10.1016/S0168-583X(99)00450-4 CrossRefGoogle Scholar
  20. 20.
    P. Duvauchelle, G. Peix, D. Babot, Rayleigh to Compton ratio computed tomography using synchrotron radiation. NDT E Int. 33, 23–31 (2000). doi: 10.1016/S0963-8695(99)00014-6 CrossRefGoogle Scholar
  21. 21.
    O. İçelli, Z. Yalçın, M. Okutan et al., Determination of photon energy absorption parameters for pellet waste, trommel sieve waste and original tincalconite. Ann. Nucl. Energy 47, 38–45 (2012). doi: 10.1016/j.anucene.2012.03.028
  22. 22.
    J.H. Hubbell, W.J. Veigele, E.A. Briggs et al., Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. Ref. Data 4, 471–538 (1975). doi: 10.1063/1.555523
  23. 23.
    F.H. Attix, W.C. Roesch, E. Tochilin, Radiation Dosimetry, 2nd edn. (Academic Press, New York, 1968). doi: 10.1016/B978-0-12-066401-6.50001-4 Google Scholar
  24. 24.
    B. Williams, Compton Scattering. The Investigation of Electron Momentum Distribution (McGraw-Hill Inc., London, 1977)Google Scholar
  25. 25.
    M. Antoniassi, A.L.C. Conceição, M.E. Poletti, Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio. Nucl. Instrum. Methods Phys. Res. Sect. A 652, 739–743 (2011). doi: 10.1016/j.nima.2010.09.110 CrossRefGoogle Scholar
  26. 26.
    L.S. Del Lama, L.D.H. Soares, M. Antoniassi et al., Effective atomic numbers for materials of medical interest at low photon energy using the Rayleigh to Compton scattering ratio. Nucl. Instrum. Methods Phys. Res. Sect. A 784, 597–601 (2015). doi: 10.1016/j.nima.2014.12.046
  27. 27.
    M.P. Singh, B.S. Sandhu, B. Singh, Measurement of effective atomic number of composite materials using scattering of γ-rays. Nucl. Instrum. Methods Phys. Res. Sect. A 580, 50–53 (2007). doi: 10.1016/j.nima.2007.05.037 CrossRefGoogle Scholar
  28. 28.
    M.P. Singh, A. Sharma, B. Singh et al., A non-destructive technique for assigning effective atomic number to scientific samples by scattering of 59.54 keV gamma photons. Nucl. Instrum. Methods Phys. Res. Sect. A 619, 63–66 (2010). doi: 10.1016/j.nima.2010.01.012
  29. 29.
    O. Içelli, Practical method for experimental effective atomic number in the coherent to Compton scattering ratio. J. Quant. Spectrosc. Radiat. Transf. 101, 151–158 (2006). doi: 10.1016/j.jqsrt.2005.11.014 CrossRefGoogle Scholar
  30. 30.
    A.E.M. Khater, Y.Y. Ebaid, A simplified gamma-ray self-attenuation correction in bulk samples. Appl. Radiat. Isot. 66, 407–413 (2008). doi: 10.1016/j.apradiso.2007.10.007 CrossRefGoogle Scholar
  31. 31.
    O. Içelli, S. Erzeneoǧlu, Experimental study on ratios of coherent scattering to Compton scattering for elements with atomic numbers 26 ≤ Z ≤ 82 in 59.5 keV for 55° and 115°. Spectrochim. Acta Part B At. Spectrosc. 57, 1317–1323 (2002). doi: 10.1016/S0584-8547(02)00050-2 CrossRefGoogle Scholar
  32. 32.
    J.H. Hubbell, S.M. Seltzer, Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (Version 1.4) (2004). http://physics.nist.gov/xaamdi
  33. 33.
    M.A. Abdel-Rahman, N. Kamel, Measurement of coherent plus incoherent differential scattering cross section of 59.54 keV γ-ray from anthracene and POPOP. Nucl. Instrum. Methods Phys. Res. Sect. A 416, 64–69 (1998). doi: 10.1016/S0168-9002(98)00652-4 CrossRefGoogle Scholar
  34. 34.
    B. Akça, S.Z. Erzeneoğlu, The mass attenuation coefficients, electronic, atomic, and molecular cross sections, effective atomic numbers, and electron densities for compounds of some biomedically important elements at 59.5 keV. Sci. Technol. Nucl. Install. (2014). doi: 10.1155/2014/901465 Google Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • Önder Eyecioğlu
    • 1
  • A. M. El-Khayatt
    • 2
    • 3
  • Yaşar Karabul
    • 4
  • Orhan İçelli
    • 4
  1. 1.Department of Computer Engineering, Engineering and Architecture FacultyNisantasi UniversityIstanbulTurkey
  2. 2.Physics Department, College of ScienceAl Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
  3. 3.Reactor Physics Department, Nuclear Research CentreAtomic Energy AuthorityCairoEgypt
  4. 4.Department of Physics, Science and Art FacultyYıldız Technical UniversityIstanbulTurkey

Personalised recommendations