Skip to main content

Advertisement

Log in

An algorithm for Monte Carlo simulation of bremsstrahlung emission by electrons

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

An algorithm for Monte Carlo simulation of bremsstrahlung emission by electrons based on the framework of SuperMC is presented in this paper with efficient and accurate methods to sample the angular distribution and energy of bremsstrahlung photons. The photon energy is sampled according to scaled energy-loss differential cross sections tabulated by Seltzer and Berger. A novel hybrid model for photon angular distribution by low- and high-energy incident electrons is developed. The model uses Tsai’s full form of angular distribution function with atomic form factors for high-energy incident electrons. For electrons of <500 keV, a simple efficient and accurate analytical distribution function is developed, using adjustable parameters determined from the fitting of numerical values of the shape functions tabulated by Kissel et al. The efficiency of sampling photon energy is 80%. Our angular sampling algorithm for high-energy electron bremsstrahlung based on Tsai distribution function is very efficient (sampling efficiency ~70%) in the useful photon energy range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Salvat, J.M. Fernández-Varea, J. Sempau et al., Monte Carlo simulation of bremsstrahlung emission by electrons. Radiat. Phys. Chem. 75, 1201–1219 (2006). doi:10.1016/j.radphyschem.2005.05.008

    Article  Google Scholar 

  2. Y. Wu, J. Song, H. Zheng et al., CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC. Ann. Nucl. Energy 82, 161–168 (2015). doi:10.1016/j.anucene.2014.08.058

    Article  Google Scholar 

  3. Y. Wu, CAD-based interface programs for fusion neutron transport simulation. Fusion Eng. Des. 84, 1987–1992 (2009). doi:10.1016/j.fusengdes.2008.12.041

    Article  Google Scholar 

  4. Y. Li, L. Lu, A. Ding et al., Benchmarking of MCAM 4.0 with the ITER 3D model. Fusion Eng. Des. 82, 2861–2866 (2007). doi:10.1016/j.fusengdes.2008.12.041

    Article  Google Scholar 

  5. Y. Wu, Z. Xie, U. Fischer, A discrete ordinates nodal method for one-dimensional neutron transport calculation in curvilinear geometries. Nucl. Sci. Eng. 133(3), 350–357 (1999)

    Google Scholar 

  6. Y. Wu, S. Zheng, X. Zhu et al., Conceptual design of the fusion-driven subcritical system FDS-I. Fusion Eng. Des. 81(Part B), 1305–1311 (2006). doi:10.1016/j.fusengdes.2005.10.015

    Article  Google Scholar 

  7. Y. Wu, F.D.S. Team, Conceptual design of the China fusion power plant FDS-II. Fusion Eng. Des. 83(10–12), 1683–1689 (2008). doi:10.1016/j.fusengdes.2008.06.048

    Article  Google Scholar 

  8. Y. Wu, F.D.S. Team, Fusion-based hydrogen production reactor and its material selection. J. Nucl. Mater. 386–388, 122–126 (2009). doi:10.1016/j.jnucmat.2008.12.075

    Article  Google Scholar 

  9. Y. Wu, F.D.S. Team, Conceptual design and testing strategy of a dual functional Lithium-Lead test blanket module in ITER and EAST. Nucl. Fusion 47(11), 1533–1539 (2007)

    Article  Google Scholar 

  10. Y. Wu, F.D.S. Team, Design analysis of the China dual-functional lithium lead (DFLL) test blanket module in ITER. Fusion Eng. Des. 82, 1893–1903 (2007). doi:10.1016/j.fusengdes.2007.08.012

    Article  Google Scholar 

  11. Y. Wu, Progress in fusion-driven hybrid system studies in China. Fusion Eng. Des. 63–64, 73–80 (2002). doi:10.1016/S0920-3796(02)00239-9

    Article  Google Scholar 

  12. Y. Wu, G. Song, R.F. Cao et al., Development of accurate/advanced radiotherapy treatment planning and quality assurance system (ARTS). Chin. Phys. C 32(Suppl.II), 177–182 (2008)

    Google Scholar 

  13. H.W. Koch, J.W. Motz, Bremsstrahlung cross section formulas and related data. Rev. Mod. Phys. 31, 920–955 (1959). doi:10.1103/RevModPhys.31.920

    Article  Google Scholar 

  14. Y.S. Tsai, Pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys. 46, 815–851 (1974). doi:10.1103/RevModPhys.46.815

    Article  Google Scholar 

  15. A.F. Bielajew, M. Rahde, S.C. Chen. Improved bremsstrahlung photon angular sampling in EGS4 code system. NRC Ottawa, Canada, PIRS-0203R, (1989)

  16. W.R. Nelson, H. Hirayama, D.W.O. Rogers. The EGS4 code system. Stanford Linear Accelerator Centre, Stanford. CA. Report SLAC-265, (1985)

  17. E. Acosta, X. Llovet, F. Salvat, Monte Carlo simulation of bremsstrahlung emission by electrons. Appl. Phys. Lett. 80, 3228–3230 (2002). doi:10.1063/1.1473684

    Article  Google Scholar 

  18. L. Kissel, C.A. Quarles, R.H. Pratt, Shape functions for atomic field bremsstrahlung from electrons of kinetic energy 1–500 keV on selected neutral atoms 1 ≤ Z ≤ 92. At. Data Nucl. Data Tables 28, 381–460 (1983). doi:10.1016/0092-640X(83)90001-3

    Article  Google Scholar 

  19. H.K. Tseng, R.H. Pratt, C.M. Lee, Electron bremsstrahlung angular distribution in the 1–500 keV energy range. Phys. Rev. A 19, 187–195 (1979). doi:10.1103/PhysRevA.19.187

    Article  Google Scholar 

  20. S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). doi:10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  21. P. Rodrigues, R. Moura, C. Ortigao et al., Geant 4 applications and developments for medical physics experiments. IEEE Trans. Nucl. Sci. 51, 1412–1419 (2004). doi:10.1109/TNS.2004.832314

    Article  Google Scholar 

  22. I. Kawrakow, E. Mainegra-Hing, D.W.O. Rogers et al., The EGSnrc code system. Monte Carlo simulation of electron and photon transport. NRCC Report PIRS-701 (2011)

  23. S.M. Seltzer, M.J. Berger, Bremsstrahlung energy spectra from electrons with kinetic energy 1 keV–10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z = 1–100. At. Data Nucl. Data Tables 35, 345–418 (1986). doi:10.1016/0092-640X(86)90014-8

    Article  Google Scholar 

  24. H. Davies, H.A. Bethe, L.C. Maximon, Theory of bremsstrahlung and pair production. II. Integral cross section for pair production. Phys. Rev. 93, 788–795 (1954). doi:10.1103/PhysRev.93.788

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Olsen, L.C. Maximon, Photon and electron polarization in high-energy bremsstrahlung and pair production with screening. Phys. Rev. 114, 887–904 (1989). doi:10.1103/PhysRev.114.887

    Article  MathSciNet  Google Scholar 

  26. H. Hirayama, Y. Namito, A.F. Bielajew et al., The EGS5 code system. Stanford Linear Accelerator Centre, Stanford. CA. Report SLAC-R-730, (2015)

Download references

Acknowledgements

The authors would like to show their great appreciation to other members of FDS Team for their support and contribution to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng He.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 81101132 and 11305203), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA03040000) and the Natural Science Foundation of Anhui Province of China (No. 1508085QH180).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasaye, M.A., Wang, H. & He, P. An algorithm for Monte Carlo simulation of bremsstrahlung emission by electrons. NUCL SCI TECH 28, 71 (2017). https://doi.org/10.1007/s41365-017-0218-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0218-7

Keywords

Navigation