An algorithm for Monte Carlo simulation of bremsstrahlung emission by electrons

Article

Abstract

An algorithm for Monte Carlo simulation of bremsstrahlung emission by electrons based on the framework of SuperMC is presented in this paper with efficient and accurate methods to sample the angular distribution and energy of bremsstrahlung photons. The photon energy is sampled according to scaled energy-loss differential cross sections tabulated by Seltzer and Berger. A novel hybrid model for photon angular distribution by low- and high-energy incident electrons is developed. The model uses Tsai’s full form of angular distribution function with atomic form factors for high-energy incident electrons. For electrons of <500 keV, a simple efficient and accurate analytical distribution function is developed, using adjustable parameters determined from the fitting of numerical values of the shape functions tabulated by Kissel et al. The efficiency of sampling photon energy is 80%. Our angular sampling algorithm for high-energy electron bremsstrahlung based on Tsai distribution function is very efficient (sampling efficiency ~70%) in the useful photon energy range.

Keywords

Bremsstrahlung Monte Carlo SuperMC Differential cross section Angular distribution 

Notes

Acknowledgements

The authors would like to show their great appreciation to other members of FDS Team for their support and contribution to this research.

References

  1. 1.
    F. Salvat, J.M. Fernández-Varea, J. Sempau et al., Monte Carlo simulation of bremsstrahlung emission by electrons. Radiat. Phys. Chem. 75, 1201–1219 (2006). doi: 10.1016/j.radphyschem.2005.05.008 CrossRefGoogle Scholar
  2. 2.
    Y. Wu, J. Song, H. Zheng et al., CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC. Ann. Nucl. Energy 82, 161–168 (2015). doi: 10.1016/j.anucene.2014.08.058 CrossRefGoogle Scholar
  3. 3.
    Y. Wu, CAD-based interface programs for fusion neutron transport simulation. Fusion Eng. Des. 84, 1987–1992 (2009). doi: 10.1016/j.fusengdes.2008.12.041 CrossRefGoogle Scholar
  4. 4.
    Y. Li, L. Lu, A. Ding et al., Benchmarking of MCAM 4.0 with the ITER 3D model. Fusion Eng. Des. 82, 2861–2866 (2007). doi: 10.1016/j.fusengdes.2008.12.041 CrossRefGoogle Scholar
  5. 5.
    Y. Wu, Z. Xie, U. Fischer, A discrete ordinates nodal method for one-dimensional neutron transport calculation in curvilinear geometries. Nucl. Sci. Eng. 133(3), 350–357 (1999)Google Scholar
  6. 6.
    Y. Wu, S. Zheng, X. Zhu et al., Conceptual design of the fusion-driven subcritical system FDS-I. Fusion Eng. Des. 81(Part B), 1305–1311 (2006). doi: 10.1016/j.fusengdes.2005.10.015 CrossRefGoogle Scholar
  7. 7.
    Y. Wu, F.D.S. Team, Conceptual design of the China fusion power plant FDS-II. Fusion Eng. Des. 83(10–12), 1683–1689 (2008). doi: 10.1016/j.fusengdes.2008.06.048 CrossRefGoogle Scholar
  8. 8.
    Y. Wu, F.D.S. Team, Fusion-based hydrogen production reactor and its material selection. J. Nucl. Mater. 386–388, 122–126 (2009). doi: 10.1016/j.jnucmat.2008.12.075 CrossRefGoogle Scholar
  9. 9.
    Y. Wu, F.D.S. Team, Conceptual design and testing strategy of a dual functional Lithium-Lead test blanket module in ITER and EAST. Nucl. Fusion 47(11), 1533–1539 (2007)CrossRefGoogle Scholar
  10. 10.
    Y. Wu, F.D.S. Team, Design analysis of the China dual-functional lithium lead (DFLL) test blanket module in ITER. Fusion Eng. Des. 82, 1893–1903 (2007). doi: 10.1016/j.fusengdes.2007.08.012 CrossRefGoogle Scholar
  11. 11.
    Y. Wu, Progress in fusion-driven hybrid system studies in China. Fusion Eng. Des. 63–64, 73–80 (2002). doi: 10.1016/S0920-3796(02)00239-9 CrossRefGoogle Scholar
  12. 12.
    Y. Wu, G. Song, R.F. Cao et al., Development of accurate/advanced radiotherapy treatment planning and quality assurance system (ARTS). Chin. Phys. C 32(Suppl.II), 177–182 (2008)Google Scholar
  13. 13.
    H.W. Koch, J.W. Motz, Bremsstrahlung cross section formulas and related data. Rev. Mod. Phys. 31, 920–955 (1959). doi: 10.1103/RevModPhys.31.920 CrossRefGoogle Scholar
  14. 14.
    Y.S. Tsai, Pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys. 46, 815–851 (1974). doi: 10.1103/RevModPhys.46.815 CrossRefGoogle Scholar
  15. 15.
    A.F. Bielajew, M. Rahde, S.C. Chen. Improved bremsstrahlung photon angular sampling in EGS4 code system. NRC Ottawa, Canada, PIRS-0203R, (1989)Google Scholar
  16. 16.
    W.R. Nelson, H. Hirayama, D.W.O. Rogers. The EGS4 code system. Stanford Linear Accelerator Centre, Stanford. CA. Report SLAC-265, (1985)Google Scholar
  17. 17.
    E. Acosta, X. Llovet, F. Salvat, Monte Carlo simulation of bremsstrahlung emission by electrons. Appl. Phys. Lett. 80, 3228–3230 (2002). doi: 10.1063/1.1473684 CrossRefGoogle Scholar
  18. 18.
    L. Kissel, C.A. Quarles, R.H. Pratt, Shape functions for atomic field bremsstrahlung from electrons of kinetic energy 1–500 keV on selected neutral atoms 1 ≤ Z ≤ 92. At. Data Nucl. Data Tables 28, 381–460 (1983). doi: 10.1016/0092-640X(83)90001-3 CrossRefGoogle Scholar
  19. 19.
    H.K. Tseng, R.H. Pratt, C.M. Lee, Electron bremsstrahlung angular distribution in the 1–500 keV energy range. Phys. Rev. A 19, 187–195 (1979). doi: 10.1103/PhysRevA.19.187 CrossRefGoogle Scholar
  20. 20.
    S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). doi: 10.1016/S0168-9002(03)01368-8 CrossRefGoogle Scholar
  21. 21.
    P. Rodrigues, R. Moura, C. Ortigao et al., Geant 4 applications and developments for medical physics experiments. IEEE Trans. Nucl. Sci. 51, 1412–1419 (2004). doi: 10.1109/TNS.2004.832314 CrossRefGoogle Scholar
  22. 22.
    I. Kawrakow, E. Mainegra-Hing, D.W.O. Rogers et al., The EGSnrc code system. Monte Carlo simulation of electron and photon transport. NRCC Report PIRS-701 (2011)Google Scholar
  23. 23.
    S.M. Seltzer, M.J. Berger, Bremsstrahlung energy spectra from electrons with kinetic energy 1 keV–10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z = 1–100. At. Data Nucl. Data Tables 35, 345–418 (1986). doi: 10.1016/0092-640X(86)90014-8 CrossRefGoogle Scholar
  24. 24.
    H. Davies, H.A. Bethe, L.C. Maximon, Theory of bremsstrahlung and pair production. II. Integral cross section for pair production. Phys. Rev. 93, 788–795 (1954). doi: 10.1103/PhysRev.93.788 MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    H. Olsen, L.C. Maximon, Photon and electron polarization in high-energy bremsstrahlung and pair production with screening. Phys. Rev. 114, 887–904 (1989). doi: 10.1103/PhysRev.114.887 MathSciNetCrossRefGoogle Scholar
  26. 26.
    H. Hirayama, Y. Namito, A.F. Bielajew et al., The EGS5 code system. Stanford Linear Accelerator Centre, Stanford. CA. Report SLAC-R-730, (2015)Google Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety TechnologyChinese Academy of SciencesHefeiChina
  2. 2.Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSuzhouChina
  3. 3.School of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations