Advertisement

Development of a 1200 fine group nuclear data library for advanced nuclear systems

  • Jun Zou
  • Lei-Ming Shang
  • Fang Wang
  • Li-Juan Hao
Article
  • 49 Downloads

Abstract

Accurate and reliable nuclear data libraries are essential for calculation and design of advanced nuclear systems. A 1200 fine group nuclear data library Hybrid Evaluated Nuclear Data Library/Fine Group (HENDL/FG) with neutrons of up to 150 MeV has been developed to improve the accuracy of neutronics calculations and analysis. Corrections of Doppler, resonance self-shielding, and thermal upscatter effects were done for HENDL/FG. Shielding and critical safety benchmarks were performed to test the accuracy and reliability of the library. The discrepancy between calculated and measured nuclear parameters fell into a reasonable range.

Keywords

Advanced nuclear system Fine group nuclear data library Effective multiplication factor 

Notes

Acknowledgements

The authors would like to thank other members of the FDS team for their supports and contributions to this research. We thank Meng-Ping Sun for her contributions to improve this manuscript.

References

  1. 1.
    T. Hazama, G. Chiba, K. Sugino, Development of a fine and ultra-fine group cell calculation code SLAROM-UF for fast reactor analyses. J. Nucl. Sci. Technol. 43(8), 908–918 (2006). doi: 10.1080/18811248.2006.9711176 CrossRefGoogle Scholar
  2. 2.
    R.A. Joseph, B. Ganapol, I. Maldonado. The Ultra-fine-group panel method for neutron slowing down. 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference (ICONE20), Anaheim, California, USA, July 30–August 3 (2012)Google Scholar
  3. 3.
    A. Rineiski, V. Sinitsa, W. Maschek, C4p, A Multi-Group Nuclear CCCC Data Processing System for Reactor Safety and Scenario Studies. Jahrestagung Kerntechnik (2005)Google Scholar
  4. 4.
    J. Zou, Z. He, Q. Zeng et al., Development and testing of multigroup library with correction of self-shielding effects in fusion-fission hybrid reactor. Fusion Eng Desi 85, 1587–1590 (2010). doi: 10.1016/j.fusengdes.2010.04.053 CrossRefGoogle Scholar
  5. 5.
    D. Xu, Z. He, J. Zou et al., Production and testing of hendl-2.1/cg coarse-group cross-section library based on endf/b-vii.0. Fusion Eng Desi 85, 2105–2110 (2010). doi: 10.1016/j.fusengdes.2010.08.010 CrossRefGoogle Scholar
  6. 6.
    Y. Wu, Conceptual design activities of FDS series fusion power plants in China. Fusion Eng. Des. 81(23–24), 2713–2718 (2006). doi: 10.1016/j.fusengdes.2006.07.068 CrossRefGoogle Scholar
  7. 7.
    L. Qiu, Y. Wu, B. Xiao et al., A low aspect ratio tokamak transmutation system. Nucl. Fusion 40, 629–633 (2000). doi: 10.1088/0029-5515/40/3Y/325 CrossRefGoogle Scholar
  8. 8.
    Y. Wu, J. Qian, J. Yu, The fusion-driven hybrid system and its material selection. J. Nucl. Mater. 307–311, 1629–1636 (2002). doi: 10.1016/S0022-3115(02)01272-2 CrossRefGoogle Scholar
  9. 9.
    Y. Wu, J. Jiang, M. Wang et al., A fusion-driven subcritical system concept based on viable technologies. Nucl. Fusion 51(10), 103036 (2011). doi: 10.1088/0029-5515/51/10/103036 CrossRefGoogle Scholar
  10. 10.
    Y. Wu, Conceptual design of the China fusion power plant FDS-II. Fusion Eng. Des. 83(10–12), 1683–1689 (2008). doi: 10.1016/j.fusengdes.2008.06.048 CrossRefGoogle Scholar
  11. 11.
    Y. Wu, Fusion-based hydrogen production reactor and its material selection. J. Nucl. Mater. 386–388, 122–126 (2009). doi: 10.1016/j.jnucmat.2008.12.075 CrossRefGoogle Scholar
  12. 12.
    Y. Wu, J. Song, H. Zheng et al., CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC. Ann. Nucl. Energy 82, 161–168 (2015). doi: 10.1016/j.Anucene.2014.08.058 CrossRefGoogle Scholar
  13. 13.
    Y. Wu, CAD-based interface programs for fusion neutron transport simulation. Fusion Eng. Des. 84, 1987–1992 (2009). doi: 10.1016/j.anucene.2014.08.058 CrossRefGoogle Scholar
  14. 14.
    Y. Wu, Z. Xie, U. Fischer, Discrete ordinates nodal method for one-dimensional neutron transport calculation in curvilinear geometries. Nucl. Sci. Eng. 133(3), 350–357 (1999)Google Scholar
  15. 15.
    Y. Li, L. Lu, A. Ding et al., Benchmarking of MCAM 4.0 with the ITER 3D model. Fusion Eng. Des. 82, 2861–2866 (2007). doi: 10.1016/j.fusengdes.2007.02.022 CrossRefGoogle Scholar
  16. 16.
    H. Hu, Benchmarking of SNAM with the ITER 3D model. Fusion Eng. Des. 82, 2867–2871 (2007). doi: 10.1016/j.fusengdes.2007.06.015 CrossRefGoogle Scholar
  17. 17.
    J. Song, G. Sun, Z. Chen et al., Benchmarking of CAD-based SuperMC with ITER benchmark model. Fusion Eng. Des. 89, 2499–2503 (2014). doi: 10.1016/j.Fusengdes.2014.05.003 CrossRefGoogle Scholar
  18. 18.
    R.E. MacFarlane et al., The NJOY Nuclear Data Processing System Version 91. LA-12740-M (Los Alamos National Laboratory, Los Alamos, 1994)CrossRefGoogle Scholar
  19. 19.
    P.G. Young, E.D. Arthur, M.B. Chadwick. Comprehensive Nuclear Model Calculations: Introduction to the Theory and Use of the GNASH Code. Tech. Rep. LA-12343-MS, Los Alamos National Lab, Los Alamos (1992)Google Scholar
  20. 20.
    J. B. Briggs, et al. in International Handbook of Evaluated Criticality Safety Benchmark Experiments. Organization for Economic Cooperation and Development, Nuclear Energy Agency. NEA/NSC/DOC(95)03/I-VII, September 2003 EditionGoogle Scholar
  21. 21.
    Y. Wu, Y. Chen, U. Fischer et al., Integral data test of FENDL-2 fusion nuclear data library with neutronic integral experiments. J. Nucl. Sci. Technol. 37, 697–702 (2014)CrossRefGoogle Scholar
  22. 22.
    S.P. Simakov, B.V. Devkin, M.G. Kobozev, et al. Neutron leakage spectra from Be, Fe, Pb, PbLi shells with 14-MeV neutron source. in Institute of Physics and Power Engineering, Obninsk, Russia, INDC(NDS)-313, p. 16 (1994)Google Scholar
  23. 23.
    A.I. Saukov, B.I. Sukhanov, A.M. Ryabinin et al., Photon leakage from spherical and hemispherical samples with a central 14-MeV neutron source. Nucl. Sci. Eng. 142, 158–164 (2002)Google Scholar
  24. 24.
    Y. Nakane, K. Hayashi, Y. Samoto, et al. Neutron transmission benchmark problems for Iron, Lead and Concrete shields in low, intermediate and high energy proton accelerator facilities, 96-029, JAERI/CodeGoogle Scholar
  25. 25.
    The MCNPX Team, MCNPX VERSION 2.5.c. LA-UR-03-2202, Los Alamos National Laboratory, Los Alamos, April 2003Google Scholar
  26. 26.
    M.B. Chadwick, P.G. Young, R.E. Macfat-lane et al., LA150 Documentation of Cross Sections. Nucl. Sci. Eng. 131, 293 (1999)CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • Jun Zou
    • 1
  • Lei-Ming Shang
    • 1
  • Fang Wang
    • 1
  • Li-Juan Hao
    • 1
  1. 1.Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety TechnologyChinese Academy of SciencesHefeiChina

Personalised recommendations