Surveying ionizing radiations in real time using a smartphone

  • Qing-Yang Wei
  • Ru Bai
  • Zhen-Peng Wang
  • Ru-Tao Yao
  • Yu Gu
  • Tian-Tian Dai


Surveying ionizing radiations of the surrounding with a smartphone provides a low-cost and convenient utility for the general public. We developed a smartphone application (App) that uses the built-in camera with a CMOS sensor and a radiation signal extraction algorithm. After a calibration through a series of radiation exposures, the App could display radiation dose rate and cumulative dose in real time without requiring covering the camera lens. A smartphone with this App can be used as a fast survey tool for ionizing radiations.


Ionizing radiation CMOS sensor Smartphone Real time Detection 



The authors would like to thank Novel Medical Inc. for the support part of the experiments.


  1. 1.
    W. Cang, W.W. Song, Missing ‘bracelet’ sets safety alarm bells ringing (2014).
  2. 2.
    Y. Gao, Y.L. Zhu, Analysis of the influence on environmental radiation level of Qinshan area caused by Fukushima nuclear accident. Nucl. Sci. Tech. 25, S010606 (2015). doi: 10.13538/j.1001-8042/nst.25.S010606 Google Scholar
  3. 3.
    M.J. Yaffe, J.A. Rowlands, X-ray detectors for digital radiography. Phy. Med. Biol. 42(1), 1 (1997). doi: 10.1088/0031-9155/42/1/001 CrossRefGoogle Scholar
  4. 4.
    W.L. David, X-ray imaging and spectroscopy using low cost COTS CMOS sensors. Nucl. Instrum. Methods Phys. Res. B 284, 29–32 (2012). doi: 10.1016/j.nimb.2011.09.007 CrossRefGoogle Scholar
  5. 5.
    D. Magalotti, L. Bissi, E. Conti et al., Performance of CMOS imager as sensing element for a real-time active pixel dosimeter for interventional radiology procedures. J. Instrum. 9(01), C01036 (2014). doi: 10.1088/1748-0221/9/01/C01036 CrossRefGoogle Scholar
  6. 6.
    E. Conti, P. Placidi, M. Biasini et al., Use of a CMOS image sensor for an active personal dosimeter in interventional radiology. IEEE Tran. Instrum. Meas. 62(5), 1065–1066 (2013). doi: 10.1109/TIM.2012.2223331 CrossRefGoogle Scholar
  7. 7.
    M. Perez, M.S. Haro, I. Sidelnik et al., Commercial CMOS pixel array for beta and gamma radiation particle counting, in Micro-Nanoelectronics, Technology and Applications (EAMTA), 2015 Argentine School (IEEE, 2015), pp. 11–16. doi: 10.1109/EAMTA.2015.7237371
  8. 8.
    F. Wang, M.Y. Wang, Y.F. Liu, Obtaining low energy γ dose with CMOS sensors. Nucl. Sci. Tech. 25, 060401 (2014). doi: 10.13538/j.1001-8042/nst.25.060401 Google Scholar
  9. 9.
    J.J. Cogliati, K.W. Derr, J. Wharton, Using CMOS sensors in a cellphone for gamma detection and classification (2014). arXiv:1401.0766v1
  10. 10.
    M. Michelsburg, T. Fehrenbach, F.P. León, Measuring ionizing radiation with a mobile device (International Society for Optics and Photonics, San Francisco, 2012). doi: 10.1117/12.908757
  11. 11.
    G. Sebastian, Using smartphones and tablet PCs for β− spectroscopy in an educational experimental setup. Eur. J. Phys. 35, 12 (2014). doi: 10.1088/0143-0807/35/6/065001 Google Scholar
  12. 12.
    A.D. Gordon, Low cost, pervasive detection of radiation threats, in 2011 IEEE International Conference on Technologies for Homeland Security (2011). doi: 10.1109/THS.2011.6107897
  13. 13.
    K. Jochen, iRadioactivity—possibilities and limitations for using smartphones and tablet PCs as radioactive counters. Phys. Teach. 52, 351 (2014). doi: 10.1119/1.4893089 CrossRefGoogle Scholar
  14. 14.

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.School of Automation and Electrical EngineeringBeijing University of Science and TechnologyBeijingChina
  2. 2.School of Medicine and Biological Sciences, University at BuffaloState University of New YorkBuffaloUSA
  3. 3.Department of Radiation OncologyChina-Japan Friendship HospitalBeijingChina

Personalised recommendations