Optimization of moderator assembly for neutron flux measurement: experimental and theoretical approaches

  • Abdul Waheed
  • Nawab Ali
  • Muzahir A. Baloch
  • Aziz A. Qureshi
  • Eid A. Munem
  • Muhammad Usman Rajput
  • Tauseef Jamal
  • Wazir Muhammad
Article
  • 71 Downloads

Abstract

A moderator of paraffin wax assembly has been demonstrated where its thickness can be optimized to thermalize fast neutrons. The assembly is used for measuring fast neutron flux of a neutron probe at different neutron energies, using BF3 (Φ1″ and 2″) and 3He(Φ0.5″) neutron detectors. The paraffin wax thickness was optimized at 6 cm for the neutron probe which contains an Am–Be neutron source. The experimental data are compared with Monte Carlo simulation results using MCNP5 version 1.4. Neutron flux comparison and neutron activation techniques are used for measuring neutron flux of the neutron probe to validate the optimum paraffin moderator thickness in the assembly. The neutron fluxes are measured at (1.17 ± 0.09) × 105 and (1.19 ± 0.1) × 105 n/s, being in agreement with the simulated values. The moderator assembly can easily be utilized for essential requirements of neutron flux measurements.

Keywords

Am–Be and 252Cf neutron sources BF3 & 3He detectors Paraffin wax Neutron flux Monte Carlo simulation 

Notes

Acknowledgements

The authors gratefully acknowledge services provided by Mr. Usman Ali, RPL, CIIT, in the fabrication of mechanical assembly and safe handling of neutron sources.

References

  1. 1.
    R. Bedogni, C. Domingo, N. Roberts et al., Investigation of the neutron spectrum of americium-beryllium sources by Bonner sphere spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. A 763, 547–552 (2014). doi: 10.1016/j.nima.2014.06.040 CrossRefGoogle Scholar
  2. 2.
    F.D. Becchetti, M. Febbraro, R. Torres-Isea et al., 252Cf fission-neutron spectrum using a simplified time-of-flight setup: an advanced teaching laboratory experiment. Am. J. Phys. 81, 112–119 (2013). doi: 10.1119/1.4769032 CrossRefGoogle Scholar
  3. 3.
    S. Croft, K.A.Miller, Group representation of the prompt fission neutron spectrum of 252Cf. Esarda Bull., 112–114 (2011). https://esarda.jrc.ec.europa.eu/images//Bulletin/Files/B_2011_046.pdf
  4. 4.
    J.W. Marsh, D.J. Thomas, M. Burke, High resolution measurements of neutron energy spectra from Am-Be and Am-B neutron sources. Nucl. Instrum. Methods Phys. Res. Sect. A 366, 340–348 (1995). doi: 10.1016/0168-9002(95)00613-3 CrossRefGoogle Scholar
  5. 5.
    J.H. Wu, Y.J. Xu, S.L. Liu et al., Energy spectrum measurement and dose rate estimation of natural neutrons in Tibet region. Nucl. Sci. Tech. 26, 060202 (2015). doi: 10.13538/j.1001-8042/nst.26.060202 Google Scholar
  6. 6.
    Z.G. Jiang, Y.G. Yuan, H.Y. Wang et al., Development of a spherical tissue equivalent proportional counter for neutron monitoring. Nucl. Sci. Tech. 26, 060403 (2015). doi: 10.13538/j.1001-8042/nst.26.060403 Google Scholar
  7. 7.
    B. Wolle, R. BÃtzner, T. Baloui, Special absorber neutron detector moderator assembly: a new detector system for flux measurements of collimated 2.5 MeV neutrons. Rev. Sci. Instrum. 70, 1194–1196 (1999). doi: 10.1063/1.1149322 CrossRefGoogle Scholar
  8. 8.
    M.A. Rana, Research and applications of nuclear tracks: developments in Pakistan and global comparison. Nat. Sci. (2012). doi: 10.4236/ns.2012.431124 Google Scholar
  9. 9.
    G.F. Knoll, Radiation detection and measurement (Wiley, New York, 2000)Google Scholar
  10. 10.
    M.U. Rajput, N.L. Maidana, V.R. Vanin et al., Measurement of thermal neutron cross section and resonance integral for the 165Ho(n, γ) 166Ho reaction. Radiochim. Acta Int. J. Chem. Asp. Nucl. Sci. Technol. 97, 63–69 (2009). doi: 10.1524/ract.2009.1575 Google Scholar
  11. 11.
    M. Akram, A. Iqbal, S.N. Husaini et al., Determination of boron contents in water samples collected from the Neelum valley, Azad Kashmir, Pakistan. Biol. Trace Elem Res. 139, 287–295 (2011). doi: 10.1007/s12011-010-8665-6 CrossRefGoogle Scholar
  12. 12.
    K. Haygarth, D. Janik, I. Janik et al., Neutron and β/γ radiolysis of water up to supercritical conditions. 1. β/γ yields for H2, H· atom, and hydrated electron. J. Phys. Chem. A 114, 5034 (2010). doi: 10.1021/jp101790p CrossRefGoogle Scholar
  13. 13.
    M. Barbagallo, L. Cosentino, V. Forcina et al., Thermal neutron detection using a silicon pad detector and 6LiF removable converters. Rev. Sci. Instrum. 84, 033503 (2013). doi: 10.1063/1.4794768 CrossRefGoogle Scholar
  14. 14.
    A.A. Naqvi, M.S. Abdelmonem, G. Al-Misned et al., New source-moderator geometry to improve performance of 252 Cf and 241 Am-Be source-based PGNAA setups. Nucl. Instrum. Methods Phys. Res. Sect. A 562, 358–364 (2006). doi: 10.1016/j.nima.2006.02.004 CrossRefGoogle Scholar
  15. 15.
    S. Ahmad, S.S. Hussain, M. Sadiq et al., Enhanced and reproducible neutron emission from a plasma focus with pre-ionization induced by depleted uranium (U238). Plasma Phys. Control. Fusion 48, 745 (2006). doi: 10.1088/0741-3335/48/6/003 CrossRefGoogle Scholar
  16. 16.
    V. Ananiev, A. Belyakov, M. Bulavin, et al., The world’s first pelletized cold neutron moderator at a neutron scattering facility. Nucl. Instrum. Methods Phys. Res. Sect. B 320, 70–74. (2014). http://www1.jinr.ru/Preprints/2012/113(P13-2012-113).pdf
  17. 17.
    S.N. Ahmed, Physics and engineering of radiation detection (Academic Press, New York, 2007)Google Scholar
  18. 18.
    M. Zakaullah, A. Waheed, S. Ahmad et al., Study of neutron emission in a low-energy plasma focus with Î2-source-assisted breakdown. Plasma Sources Sci. Technol. 12, 443 (2003). doi: 10.1088/0963-0252/12/3/320 CrossRefGoogle Scholar
  19. 19.
    M. Zakaullah, K. Alamgir, A. Rasool et al., Correlation of plasma electron temperature with neutron emission in a low-energy plasma focus. IEEE Trans. Plasma Sci. 29, 62–68 (2001). doi: 10.1109/27.912943 CrossRefGoogle Scholar
  20. 20.
    M. Zakaullah, I. Akhtar, A. Waheed et al., Comparative study of ion, X-ray and neutron emission in a low energy plasma focus. Plasma Sources Sci. Technol. 7, 206 (1998). doi: 10.1088/0963-0252/7/2/015 CrossRefGoogle Scholar
  21. 21.
    C. International, Neutron probe method using a 503DR Hydroprobe, ICT, Editor, International Pty Ltd: AustraliaGoogle Scholar
  22. 22.
    S.N. Goshal, Nuclear Physics (S Chand Publisher, New Delhi, 1994)Google Scholar
  23. 23.
    M.H. Jasim, N.T. Abdulameer, Neutron capture cross section measurements of paraffin wax. Int. J. Appl. Innov. Eng. Manag. 3, 112–114 (2014). http://ijaiem.org/volume3issue4/IJAIEM-2014-04-20-034.pdf
  24. 24.
    V.M. Thakur, A. Jain, K. Biju, et al., Studies on optimization of moderator thickness for BF3 detectors used for monitoring of fissile material. Indian J. Pure Appl. Phys. 50, 811–813 (2012). http://nopr.niscair.res.in/handle/123456789/14910
  25. 25.
    A.A. Naqvi, M.M. Nagadi, M. Maslehuddin et al., Verification of design calculations of a PGNAA setup using nuclear track detectors. Radiat. Meas. 38, 37–41 (2004). doi: 10.1016/S1350-4487(03)00252-X CrossRefGoogle Scholar
  26. 26.
    J.K. Zhao, J.L. Robertson, K.W. Herwig et al., Optimizing moderator dimensions for neutron scattering at the spallation neutron source. Rev. Sci. Instrum. 84, 125104 (2013). doi: 10.1063/1.4841875 CrossRefGoogle Scholar
  27. 27.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM–The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818–1823 (2010). doi: 10.1016/j.nimb.2010.02.091 CrossRefGoogle Scholar
  28. 28.
    R. A. Forster T.N.K.G., MCNP—A General Monte Carlo N-Particle Transport Code, Version 5. 2003Google Scholar
  29. 29.
    M. Borsaru, P.L. Eisler, Neutron activation analysis (slow neutrons), in United States Patent, 1982Google Scholar
  30. 30.
    J.R. Parrington, D.K. Harold, L.B. Susan et al., Chart of radionuclides—Knoll Atomic Power Laboratory (Naval Reactors, US Department of Energy, Washington, DC, 1996)Google Scholar
  31. 31.
    M.B. Chadwick, M. Herman, P. Obložinský et al., ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112, 2887–2996 (2011). doi: 10.1016/j.nds.2011.11.002 CrossRefGoogle Scholar
  32. 32.
    X-5 Monte Carlo Team, MCNP—A General Monte Carlo N-Particle Transport Code, Version 5 (2003)Google Scholar
  33. 33.
    M. Tohamy, M. Fayez-Hassan, M.M. Abdel-Khalek, et al., A dual-hemisphere (spherical) irradiation facility for Am-Be neutron field optimization (2009). http://www.iaea.org/inis/collection/NCLCollectionStore/Public/42/009/42009903.pdf

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • Abdul Waheed
    • 1
  • Nawab Ali
    • 2
  • Muzahir A. Baloch
    • 3
  • Aziz A. Qureshi
    • 1
  • Eid A. Munem
    • 4
  • Muhammad Usman Rajput
    • 2
  • Tauseef Jamal
    • 5
  • Wazir Muhammad
    • 6
  1. 1.Radiation Physics Laboratory, Physics DepartmentCOMSATS Institute of Information Technology (CIIT)IslamabadPakistan
  2. 2.Physics DivisionPakistan Institute of Nuclear Science and Technology (PINSTECH)IslamabadPakistan
  3. 3.Department of Physics, College of ScienceMajmaah UniversityAl-ZulfiSaudi Arabia
  4. 4.School of PhysicsUniversity Science MalaysiaGelugorMalaysia
  5. 5.DCISPakistan Institute Engineering and Applied Sciences (PIEAS)IslamabadPakistan
  6. 6.Health Physics Division (HPD)Pakistan Institute of Nuclear Science and Technology (PINSTECH)IslamabadPakistan

Personalised recommendations