Advertisement

Influence of N2 flow rate on structure and properties of TiBCN films prepared by multi-cathodic arc ion plating and studied with ion beam scattering spectroscopy

  • Bin Han
  • Ze-Song Wang
  • D. Neena
  • Bao-Zhu Lin
  • Bing Yang
  • Chuan-Sheng Liu
  • De-Jun Fu
Article
  • 59 Downloads

Abstract

TiBCN films were deposited on Si(100) and cemented carbide substrates by using multi-cathodic arc ion plating in C2H2 and N2 atmosphere. Their structure and mechanical properties were studied systematically under different N2 flow rates. The results showed that the TiBCN films were adhered well to the substrates. Rutherford backscattering spectroscopy was employed to determine the relative concentration of Ti, B, C and N in the films. The chemical bonding states of the films were explored by X-ray photoelectron spectroscopy, revealing the presence of bonds of TiN, Ti(C,N), BN, pure B, sp 2 C–C and sp 3 C–C, which changed with the N2 flow rate. TiBCN films contain nanocrystals of TiN/TiCN and TiB2/Ti(B,C) embedded in an amorphous matrix consisting of amorphous BN and carbon at N2 flow rate of up to 250 sccm.

Keywords

TiBCN Nanocomposite N2 flow rate Rutherford backscattering spectroscopy (RBS) X-ray photoelectron spectroscopy 

References

  1. 1.
    H. Holzschuh, Chemical-vapor deposition of wear resistant hard films in the Ti–B–C–N system: properties and metal-cutting tests. Int. J. Refract. Met. H. 20, 143–149 (2002). doi: 10.1016/s0263-4368(02)00013-6 CrossRefGoogle Scholar
  2. 2.
    I. Dreiling, D. Stiens, T. Chassé, Raman spectroscopy investigations of TiBxCyNz films deposited by low pressure chemical vapor deposition. Surf. Coat. Technol. 205, 1339–1344 (2010). doi: 10.1016/j.surfcoat.2010.09.022 CrossRefGoogle Scholar
  3. 3.
    P.C. Tsai, W.J. Chen, J.H. Chen et al., Deposition and characterization of TiBCN films by cathodic arc plasma evaporation. Thin Solid Films 517, 5044–5049 (2009). doi: 10.1016/j.tsf.2009.03.029 CrossRefGoogle Scholar
  4. 4.
    S. Shimada, M. Takahashi, J. Tsujino et al., Deposition and wear resistance of Ti–B–N–C films on WC–Co cutting tools from alkoxide solutions by thermal plasma CVD. Surf. Coat. Technol. 201, 7194–7200 (2007). doi: 10.1016/j.surfcoat.2007.01.041 CrossRefGoogle Scholar
  5. 5.
    J. Lin, B. Mishra, J.J. Moore et al., Effect of asynchronous pulsing parameters on the structure and properties of CrAlN films deposited by pulsed closed field unbalanced magnetron sputtering (P-CFUBMS). Surf. Coat. Technol. 202, 1418–1436 (2008). doi: 10.1016/j.surfcoat.2007.06.068 CrossRefGoogle Scholar
  6. 6.
    F. Saugnac, F. Teyssandier, A. Marchand, Characterization of C–B–N solid solutions deposited from a gaseous phase between 900 and 1050°C. J. Am. Ceram. Soc. 75, 161–169 (1992). doi: 10.1111/j.1151-2916.1992.tb05459.x CrossRefGoogle Scholar
  7. 7.
    M.D. Abad, J.C. Sánchez-López, M. Brizuela et al., Influence of carbon chemical bonding on the tribological behavior of sputtered nanocomposite TiBC/a-C films. Thin Solid Films 518, 5546–5552 (2010). doi: 10.1016/j.tsf.2010.04.038 CrossRefGoogle Scholar
  8. 8.
    L.L. Wang, R.Y. Wang, S.J. Yan et al., Structure and properties of Mo-containing diamond-like carbon films produced by ion source assisted cathodic arc ion-plating. Appl. Surf. Sci. 286, 109–114 (2013). doi: 10.1016/j.apsusc.2013.09.029 CrossRefGoogle Scholar
  9. 9.
    C. Rebholz, A. Leyland, P. Larour et al., The effect of boron additions on the tribological behaviour of TiN films produced by electron-beam evaporative PVD. Surf. Coat. Technol. 116–119, 648–653 (1999). doi: 10.1016/s0257-8972(99)00260-1 CrossRefGoogle Scholar
  10. 10.
    H. Elmkhah, F. Mahboubi, A. Abdollah-Zadeh et al., Size-dependency of corrosion behavior for TiN nanostructure films deposited by the PACVD method. Mater. Lett. 82, 105–108 (2012). doi: 10.1016/j.matlet.2012.04.154 CrossRefGoogle Scholar
  11. 11.
    D.E. Wolfe, J. Singh, Synthesis and characterization of TiBCN films deposited by ion beam assisted, co-evaporation electron beam-physical vapor deposition (EB-PVD). J. Mater. Sci. 37, 3777–3787 (2002). doi: 10.1016/s0257-8972(02)00666-7 CrossRefGoogle Scholar
  12. 12.
    F. Sanchette, C. Ducros, T. Schmitt et al., Nanostructured hard films deposited by cathodic arc deposition: From concepts to applications. Surf. Coat. Technol. 205, 5444–5453 (2011). doi: 10.1016/j.surfcoat.2011.06.015 CrossRefGoogle Scholar
  13. 13.
    P.Z. Shi, J. Wang, C.X. Tian et al., Structure, mechanical and tribological properties of CrN thick films deposited by circular combined tubular arc ion plating. Surf. Coat. Technol. 228, S534–S537 (2012). doi: 10.1016/j.surfcoat.2012.04.041 CrossRefGoogle Scholar
  14. 14.
    C. Pfohl, A. Bulak, K. Rie, Development of titanium diboride films deposited by PACVD. Surf. Coat. Technol. 131, 141–146 (2000). doi: 10.1016/s0257-8972(00)00752-0 CrossRefGoogle Scholar
  15. 15.
    R. Gilmore, M.A. Baker, P.N. Gibson et al., Preparation and characterisation of low-friction TiB2-based films by incorporation of C or MoS2. Surf. Coat. Technol. 105, 45–50 (1998). doi: 10.1016/s0257-8972(98)00445-9 CrossRefGoogle Scholar
  16. 16.
    Z.A. Umar, R.S. Rawat, K.S. Tan et al., Hard TiCx/SiC/a-C: H nanocomposite thin films using pulsed high energy density plasma focus device. Nucl. Instrum. Meth. B 301, 53–61 (2013). doi: 10.1016/j.nimb.2013.03.007 CrossRefGoogle Scholar
  17. 17.
    R. Ali, E. Alkhateeb, F. Kellner et al., Chemical vapor deposition of titanium based ceramic films on low carbon steel: Characterization and electrochemical evaluation. Surf. Coat. Technol. 205, 5454–5463 (2011). doi: 10.1016/j.surfcoat.2011.06.014 CrossRefGoogle Scholar
  18. 18.
    J. Lin, J.J. Moore, W.C. Moerbe et al., Structure and properties of selected (Cr–Al–N, TiC–C, Cr–B–N) nanostructured tribological films. Int. J. Refract. Met. Hard. Mater. 28, 2–14 (2010). doi: 10.1016/j.ijrmhm.2009.07.012 CrossRefGoogle Scholar
  19. 19.
    J. Lin, J.J. Moore, B. Mishra et al., The structure and mechanical and tribological properties of TiBCN nanocomposite films. Acta Mater. 58, 1554–1564 (2010). doi: 10.1016/j.actamat.2009.10.063 CrossRefGoogle Scholar
  20. 20.
    Y.H. Lu, Z.F. Zhou, P. Sit et al., X-Ray photoelectron spectroscopy characterization of reactively sputtered Ti–B–N thin films. Surf. Coat. Technol. 187, 98–105 (2004). doi: 10.1016/j.surfcoat.2003.11.024 CrossRefGoogle Scholar
  21. 21.
    B. Yang, Z.H. Huang, H.T. Gao et al., Droplet-free TiC nanocrystal-containing diamond-like carbon films deposited by combined cathodic arc MF magnetron sputtering. Surf. Coat. Technol. 201, 6808–6811 (2007). doi: 10.1016/j.surfcoat.2006.09.082 CrossRefGoogle Scholar
  22. 22.
    Y. Zheng, X.L. Liu, H.F. Zhang, Properties of Zr–ZrC–ZrC/DLC gradient films on TiNi alloy by the PIIID technique combined with PECVD. Surf. Coat. Technol. 202, 3011–3016 (2008). doi: 10.1016/j.surfcoat.2007.11.004 CrossRefGoogle Scholar
  23. 23.
    Y.H. Lu, Y.G. Shen, Z.F. Zhou et al., Phase configuration, nanostructure evolution, and mechanical properties of unbalanced magnetron-sputtered Ti–Cx Ny thin films. J. Vac. Sci. Technol. A 25, 1539–1546 (2007). doi: 10.1116/1.2784719 CrossRefGoogle Scholar
  24. 24.
    Q. Wang, F. Zhou, Z. Zhou et al., Influence of carbon content on the microstructure and tribological properties of TiN(C) films in water lubrication. Surf. Coat. Technol. 206, 3777–3787 (2012). doi: 10.1016/j.surfcoat.2012.03.041 CrossRefGoogle Scholar

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  • Bin Han
    • 1
  • Ze-Song Wang
    • 1
  • D. Neena
    • 1
  • Bao-Zhu Lin
    • 1
  • Bing Yang
    • 2
  • Chuan-Sheng Liu
    • 1
  • De-Jun Fu
    • 1
  1. 1.Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and TechnologyWuhan UniversityWuhanChina
  2. 2.School of Power and Mechanical EngineeringWuhan UniversityWuhanChina

Personalised recommendations