Scan system for arbitrary-shaped samples at the synchrotron radiation facility



X-ray fluorescence (XRF) scan methodology is important for elemental mapping of samples at a synchrotron radiation facility. To save the experiment time and improve the experiment efficiency, one should develop an efficient XRF scan method. In this paper, a new scan mode is presented. It can map arbitrary-shaped areas without stopping the motors. The control and data acquisition system integrates motor controlling, detector triggering, and data acquisition and storage. The system realizes the arbitrary-shaped 2D-mapping and fluorescence data acquisition synchronously. SR-XRF mapping has been performed with a standard gold mask to verify the validity of this method at beamline BL15U1 of the Shanghai Synchrotron Radiation Facility. The results show that this method reduces the total scan time and improves the experiment efficiency.


Synchrotron radiation X-ray fluorescence mapping EPICS XPS controller 


  1. 1.
    C.K. Bhat, D. Joseph, S. Pandita et al., Non-destructive analysis of didymium and praseodymium molybdate crystals using energy dispersive X-ray fluorescence technique. Radiat. Phys. Chem. 125, 9–13 (2016). doi: 10.1016/j.radphyschem.2016.02.028 CrossRefGoogle Scholar
  2. 2.
    M.L. Lord, F.E. McNeill, J.L. Grafe et al., A phantom-based feasibility study for detection of gadolinium in bone in vivo using X-ray fluorescence. Appl. Radiat. Isot. 112, 103–109 (2016). doi: 10.1016/j.apradiso.2016.03.021 CrossRefGoogle Scholar
  3. 3.
    I. Ramos, I.M. Pataco, M.P. Mourinho et al., Elemental mapping of biofortified wheat grains using micro X-ray fluorescence. Spectrochim. Acta Part B 120, 30–36 (2016). doi: 10.1016/j.sab.2016.03.014 CrossRefGoogle Scholar
  4. 4.
    J.H. Dycus, W. Xu, X. Sang et al., Influence of experimental conditions on atom column visibility in energy dispersive X-ray spectroscopy. Ultramicroscopy 171, 1–7 (2016). doi: 10.1016/j.ultramic.2016.08.013 CrossRefGoogle Scholar
  5. 5.
    M.A. Phedorin, V.A. Bobrov, K.V. Zolotarev, Peat archives from Siberia: synchrotron beam scanning with X-ray fluorescence measurements. Nucl. Instrum. Methods Phys. Res. Sect. A 575, 199–201 (2007). doi: 10.1016/j.nima.2007.01.067 CrossRefGoogle Scholar
  6. 6.
    K. Hayashi, N. Happo, S. Hosokawa, Applications of X-ray fluorescence holography to determine local lattice distortions. J. Electron Spectrosc. Relat. Phenom. 195, 337–346 (2014). doi: 10.1016/j.elspec.2014.07.008 CrossRefGoogle Scholar
  7. 7.
    L. Lu, J.W. Huang, D. Fan et al., Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: a study with simultaneous in situ synchrotron X-ray imaging and diffraction. Acta Mater. 120, 86–94 (2016). doi: 10.1016/j.actamat.2016.08.029 CrossRefGoogle Scholar
  8. 8.
    F. Yan, EPICS-Based Motion Control and Data Acquisition System on Synchrotron Radiation Microfocus Station. Ph.D. Thesis (Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 2011)Google Scholar
  9. 9.
    P. Wrobel, M. Czyzycki, L. Furman et al., Labview control software for scanning micro-beam X-ray fluorescence spectrometer. Talanta 93, 186–192 (2012). doi: 10.1016/j.talanta.2012.02.010 CrossRefGoogle Scholar
  10. 10.
    F. Yan, J.C. Zhang, A.G. Li et al., Fast scanning X-ray microprobe fluorescence imaging based on synchrotron radiation. Acta Phys. Sin. 60(9), 1–7 (2011). doi: 10.7498/aps.60.090702 Google Scholar
  11. 11.
    S. Stepanov, H. Mark, W.Y. Derek et al., Fast fluorescence techniques for crystallography beamlines. J. Appl. Crystallogr. 44, 772–778 (2011). doi: 10.1107/S0021889811016748 CrossRefGoogle Scholar
  12. 12.
    Fast X-ray fluorescence imaging in continuous scanning mode at beamline L.
  13. 13.
    P.M. Pelz, G. Sicairos, On-the-fly scans for X-ray ptychography. Appl. Phys. Lett. 105, 251101 (2014). doi: 10.1063/1.4904943 CrossRefGoogle Scholar
  14. 14.
    F.X. Kartner, F. Ahr, A.L. Calendron et al., AXSIS: exploring the frontiers in attosecond X-ray science, imaging and spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A 829, 24–29 (2016). doi: 10.1016/j.nima.2016.02.080 CrossRefGoogle Scholar
  15. 15.
    J.M. Sampaio, T.I. Madeira, M. Guerra et al., Relativistic calculations of K-, L- and M-shell X-ray production cross-sections by electron impact for Ne, Ar, Kr, Xe, Rn and Uuo. J. Quant. Spectrosc. Radiat. Transf. 182, 87–93 (2016). doi: 10.1016/j.jqsrt.2016.05.012 CrossRefGoogle Scholar
  16. 16.
    XPS Series Universal High-Performance Motion Controller/Driver.
  17. 17.
    F. Yan, A.G. Li, K. Yang, EPICS-based data acquisition system of hard X-ray microfocus station. Nucl. Tech. 32(11), 801–805 (2009). doi: 10.7498/aps.60.090702 Google Scholar
  18. 18.
    L.L. Zhang, S. Yan, S. Jiang et al., Hard X-ray micro-focusing beamline at SSRF. Nucl. Sci. Tech. 26, 060101 (2015). doi: 10.13538/j.1001-8042/nst.26.060101 Google Scholar
  19. 19.
  20. 20.
    B. Franksen, State Notation Language and Sequencer.

Copyright information

© Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Chinese Nuclear Society, Science Press China and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations