Amidoxime-based adsorbents prepared by cografting acrylic acid with acrylonitrile onto HDPE fiber for the recovery of uranium from seawater

Abstract

An amidoxime-based polymeric adsorbent was prepared by pre-irradiation grafting of acrylonitrile and acrylic acid onto high-density polyethylene fibers using electron beams, followed by amidoximation. Quantitative recovery of uranium was investigated by flow-through experiment using simulated seawater and marine test in natural seawater. The maximum amount of uranium uptake was 2.51 mg/g-ads after 42 days of contact with simulated seawater and 0.13 mg/g-ads for 15 days of contact with natural seawater. A lower uranium uptake in marine test can be attributed to the short adsorption time and the contamination of marine microorganisms and iron. However, the high selectivity toward uranium against vanadium may be beneficial to harvest uranyl ion onto adsorbents and the economic feasibility for recovery of uranium from seawater.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    A.Y. Zhang, T. Asakura, G. Uchiyama, The adsorption mechanism of uranium(vi) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group. React. Funct. Polym. 57, 67–76 (2003). doi:10.1016/j.reactfunctpolym.2003.07.005

    Article  Google Scholar 

  2. 2.

    K. Saito, T. Hori, S. Furusaki et al., Porous amidoxime-group-containing membrane for the recovery of uranium from seawater. Ind. Eng. Chem. Res. 26, 1977–1981 (1987). doi:10.1021/Ie00070a007

    Article  Google Scholar 

  3. 3.

    X.Y. Liu, H.Z. Liu, H.J. Ma et al., Adsorption of the uranyl ions on an amidoxime-based polyethylene nonwoven fabric prepared by preirradiation-induced emulsion graft polymerization. Ind. Eng. Chem. Res. 51, 15089–15095 (2012). doi:10.1021/ie301965g

    Article  Google Scholar 

  4. 4.

    H.J. Schenk, L. Astheimer, E.G. Witte et al., Development of sorbers for the recovery of uranium from seawater. 1. Assessment of key parameters and screening studies of sorber materials. Separ. Sci. Technol. 17, 1293–1308 (1982). doi:10.1080/01496398208056103

    Article  Google Scholar 

  5. 5.

    J. Kim, C. Tsouris, Y. Oyola et al., Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind. Eng. Chem. Res. 53, 6076–6083 (2014). doi:10.1021/ie4039828

    Article  Google Scholar 

  6. 6.

    T. Saito, S. Brown, S. Chatterjee et al., Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization. J. Mater. Chem. A 2, 14674–14681 (2014). doi:10.1039/c4ta03276d

    Article  Google Scholar 

  7. 7.

    D. Shao, J. Li, X. Wang, Poly(amidoxime)-reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater. Sci. China Chem. 57, 1449–1458 (2014). doi:10.1007/s11426-014-5195-7

    Article  Google Scholar 

  8. 8.

    S. Xie, X. Liu, B. Zhang et al., Electrospun nanofibrous adsorbents for uranium extraction from seawater. J. Mater. Chem. A 3, 2552–2558 (2015). doi:10.1039/c4ta06120a

    Article  Google Scholar 

  9. 9.

    Z. Xing, J. Hu, M. Wang et al., Properties and evaluation of amidoxime-based UHMWPE fibrous adsorbent for extraction of uranium from seawater. Sci. China Chem. 56, 1504–1509 (2013). doi:10.1007/s11426-013-5002-x

    Article  Google Scholar 

  10. 10.

    M. Kanno, Present status of study on extraction of uranium from sea-water. J. Nucl. Sci. Technol. 21, 1–9 (1984). doi:10.3327/Jnst.21.1

    Article  Google Scholar 

  11. 11.

    I. Tabushi, Y. Kobuke, T. Nishiya, Extraction of uranium from seawater by polymer-bound macrocyclic hexaketone. Nature 280, 665–666 (1979). doi:10.1038/280665a0

    Article  Google Scholar 

  12. 12.

    W.J. Williams, A.H. Gillam, Separation of uranium from seawater by adsorbing colloid flotation. Analyst 103, 1239–1243 (1978). doi:10.1039/An9780301239

    Article  Google Scholar 

  13. 13.

    T. Kawai, K. Saito, K. Sugita et al., Comparison of amidoxime adsorbents prepared by cografting methacrylic acid and 2-hydroxyethyl methacrylate with acrylonitrile onto polyethylene. Ind. Eng. Chem. Res. 39, 2910–2915 (2000). doi:10.1021/Ie990474a

    Article  Google Scholar 

  14. 14.

    S.H. Choi, Y.C. Nho, Adsorption of uo22+ by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group. Radiat. Phys. Chem. 57, 187–193 (2000). doi:10.1016/S0969-806x(99)00348-5

    Article  Google Scholar 

  15. 15.

    Q.H. Gao, J.T. Hu, R. Li et al., Radiation synthesis of a new amidoximated UHMWPE fibrous adsorbent with high adsorption selectivity for uranium over vanadium in simulated seawater. Radiat. Phys. Chem. 122, 1–8 (2016). doi:10.1016/j.radphyschem.2015.12.023

    Article  Google Scholar 

  16. 16.

    J. Hu, H. Ma, Z. Xing et al., Preparation of amidoximated ultrahigh molecular weight polyethylene fiber by radiation grafting and uranium adsorption test. Ind. Eng. Chem. Res. 55, 4118–4124 (2016). doi:10.1021/acs.iecr.5b03175

    Article  Google Scholar 

  17. 17.

    S.H. Choi, Y.C. Nho, Radiation-induced graft copolymerization of binary monomer mixture containing acrylonitrile onto polyethylene films. Radiat. Phys. Chem. 58, 157–168 (2000). doi:10.1016/S0969-806x(99)00367-9

    Article  Google Scholar 

  18. 18.

    J. Okamoto, T. Sugo, A. Katakai et al., Amidoxime-group-containing adsorbents for metal-ions synthesized by radiation-induced grafting. J. Appl. Polym. Sci. 30, 2967–2977 (1985). doi:10.1002/app.1985.070300720

    Article  Google Scholar 

  19. 19.

    H. Omichi, A. Katakai, T. Sugo et al., A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. Separ. Sci. Technol. 20, 163–178 (1985). doi:10.1080/01496398508058357

    Article  Google Scholar 

  20. 20.

    S. Das, A.K. Pandey, A. Athawale et al., Chemical aspects of uranium recovery from seawater by amidoximated electron-beam-grafted polypropylene membranes. Desalination 232, 243–253 (2008). doi:10.1016/j.desal.2007.09.019

    Article  Google Scholar 

  21. 21.

    T. Saito, Y. Oyola, C.J. Janke, Investigation of polymer structure and properties of amidoxime-functionalized hydrophilic random copolymers on performance of uranium recovery from seawater. Abstr. Pap. Am. Chem. Soc. 244 (2012)

  22. 22.

    H.W. Yu, S.S. Yang, H.M. Ruan et al., Recovery of uranium ions from simulated seawater with palygorskite/amidoxime polyacrylonitrile composite. Appl. Clay Sci. 111, 67–75 (2015). doi:10.1016/j.clay.2015.01.035

    Article  Google Scholar 

  23. 23.

    S. Das, A.K. Pandey, T. Vasudevan et al., Adsorptive preconcentration of uranium in hydrogels from seawater and aqueous solutions. Ind. Eng. Chem. Res. 48, 6789–6796 (2009). doi:10.1021/ie801912n

    Article  Google Scholar 

  24. 24.

    C.K. Na, H.J. Park, B.G. Kim, Optimal amidoximation conditions of acrylonitrile grafted onto polypropylene by photoirradiation-induced graft polymerization. J. Appl. Polym. Sci. 125, 776–785 (2012). doi:10.1002/app.35059

    Article  Google Scholar 

  25. 25.

    S. Brown, Y.F. Yue, L.J. Kuo et al., Uranium adsorbent fibers prepared by atom-transfer radical polymerization (atrp) from poly(vinyl chloride)-co-chlorinated poly(vinyl chloride) (pvc-co-cpvc) fiber. Ind. Eng. Chem. Res. 55, 4139–4148 (2016). doi:10.1021/acs.iecr.5b03355

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jing-Ye Li or Guo-Zhong Wu.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 21676291, 21306220, 11275252, 11305243 and 11405249). The research was also in part supported by the “Knowledge Innovation Program of Chinese academy of sciences”.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Hu, JT., Ma, HJ. et al. Amidoxime-based adsorbents prepared by cografting acrylic acid with acrylonitrile onto HDPE fiber for the recovery of uranium from seawater. NUCL SCI TECH 28, 45 (2017). https://doi.org/10.1007/s41365-017-0198-7

Download citation

Keywords

  • Radiation-induced grafting
  • Amidoxime
  • Acrylonitrile
  • Uranium
  • Selectivity