Skip to main content

Electronic structure and optical properties of the scintillation material wurtzite ZnS(Ag)


In order to investigate the effect of Ag doping (ZnS(Ag)) and Zn vacancy (\(V_\mathrm{{Zn}}\)) on the alpha particle detection performance of wurtzite (WZ) ZnS as a scintillation cell component, the electronic structure and optical properties of ZnS, ZnS(Ag), and \(V_\mathrm{{Zn}}\) were studied by first-principle calculation based on the density functional theory. The results show that the band gaps of ZnS, ZnS(Ag), and \(V_\mathrm{{Zn}}\) are 2.17, 1.79, and 2.37 eV, respectively. Both ZnS(Ag) and \(V_\mathrm{{Zn}}\) enhance the absorption and reflection of the low energy photons. A specific energy, about 2.9 eV, leading to decrease of detection efficiency is observed. The results indicate that Ag doping has a complex effect on the detection performance. It is beneficial to produce more visible light photons than pure WZ ZnS when exposed to the same amount of radiation, while the increase of the absorption to visible light photons weakens the detection performance. Zn vacancy has negative effect on the detection performance. If we want to improve the detection performance of WZ ZnS, Ag doping will be a good way, but we should reduce the absorption to visible light photons and control the number of Zn vacancy rigorously.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    B.Y. Geng, X.W. Liu, Q.B. Du et al., Structure and optical properties of periodically twinned ZnS nanowires. Appl. Phys. Lett. 88, 163104 (2006). doi:10.1063/1.2196827

    Article  Google Scholar 

  2. 2.

    N. Kubota, M. Katagiri, K. Kamijo, Evaluation of Zns-family phosphors for neutron detectors using photon counting method. Nucl. Instrum. Methods A 529, 321–324 (2004). doi:10.1016/j.nima.2004.05.004

    Article  Google Scholar 

  3. 3.

    J. Schrier, D.O. Demchenko, A.P. Alivisatos, Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 2007(7), 2377–2382 (2007). doi:10.1021/nl071027k

    Article  Google Scholar 

  4. 4.

    J.H. Li, X.H. Zeng, Z.H. Ji et al., Electronic structure and optical properties of Ag-doping and Zn vacancy impurities in ZnS. Acta Phys. Sin. 60, 607–613 (2011). doi:10.1016/j.pmatsci.2010.10.001

    Google Scholar 

  5. 5.

    X. Fang, T. Zhai, K. Gautam et al., ZnS nanostructures: from synthesis to applications. Prog. Mater. Sci. 56, 175–287 (2011). doi:10.1016/j.pmatsci.2010.10.001

    Article  Google Scholar 

  6. 6.

    J. Xie, First-principles study on the magnetism in ZnS-based diluted magnetic semiconductors. J. Magn. Magn. Mater. 322, L37–L41 (2010). doi:10.1016/j.jmmm.2010.04.031

    Article  Google Scholar 

  7. 7.

    X. Fang, Y. Bando, M. Liao et al., Single-crystalline Zns nanobelts as ultraviolet-light sensors. Adv. Mater. 21, 2034–2039 (2009). doi:10.1002/adma.200802441

    Article  Google Scholar 

  8. 8.

    J.H. Yu, J. Joo, H.M. Park et al., Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 127, 5662–5670 (2005). doi:10.1021/ja044593f

    Article  Google Scholar 

  9. 9.

    X.S. Fang, C.H. Ye, L.D. Zhang et al., Temperature controlled catalytic growth of Zns nanostructures by the evaporation of Zns nanopowders. Adv. Funct. Mater. 15, 63–68 (2005). doi:10.1002/adfm.200305008

    Article  Google Scholar 

  10. 10.

    Z. Wang, L.L. Daemen, Y. Zhao et al., Morphology-tuned wurtzite-type ZnS nanobelts. Nat. Mater. 15, 922–927 (2005). doi:10.1038/nmat1522

    Article  Google Scholar 

  11. 11.

    Y. Zhao, Y. Zhang, H. Zhu et al., Low-temperature synthesis of hexagonal (wurtzite) ZnS nanocrystals. J. Am. Chem. Soc. 126, 6874–6875 (2004). doi:10.1021/ja048650g

    Article  Google Scholar 

  12. 12.

    N. Gao, W. Chen, R. Zhang et al., First principles investigation on the electronic, magnetic and optical properties of Bi0.8M0.2Fe0.9Co0.1O3 (M= La, Gd, Er, Lu). Comput. Theor. Chem. 1084, 36–42 (2016). doi:10.1016/j.comptc.2016.03.001

    Article  Google Scholar 

  13. 13.

    W.G. Moulton, C.W. Sherwin, Fast neutron detector. Rev. Sci. Instrum. 33, 361–362 (1949). doi:10.2172/4396836

    Google Scholar 

  14. 14.

    R. Stedman, Scintillator for thermal neutrons using \(\rm{Li}^6\)F and ZnS(Ag). Rev. Sci. Instrum. 31, 1156 (1960). doi:10.1063/1.1716833

    Article  Google Scholar 

  15. 15.

    P.G. Koontz, G.R. Keepin, J.E. Ashley, ZnS(Ag) phosphor mixtures for neutron scintillation counting. Rev. Sci. Instrum. 26, 352–356 (1955). doi:10.2172/4394603

    Article  Google Scholar 

  16. 16.

    J.S. Mccloy, M. Bliss, B. miller et al., Scintillation and luminescence in transparent colorless single and polycrystalline bulk ceramic ZnS. J. Lumin. 157, 416–423 (2015). doi:10.1016/j.jlumin.2014.09.015

    Article  Google Scholar 

  17. 17.

    M. Ardid, J.L. Ferrero, A. Herrero, Study of the background on a ZnS(Ag) alpha counter with a plastic veto detector. Nucl. Instrum. Methods A 557, 510–515 (2006). doi:10.1016/j.nima.2005.10.124

    Article  Google Scholar 

  18. 18.

    Y. Morishita, S. Yamamoto, K. Izaki et al., Performance comparison of scintillators for alpha particle detectors. Nucl. Instrum. Methods A 764, 383–386 (2014). doi:10.1016/j.nima.2014.07.046

    Article  Google Scholar 

  19. 19.

    H. Philipsborn, Large-area low-level gross alpha ZnS scintillation counting. Appl. Radiat. Isot. 67, 797–799 (2009). doi:10.1016/j.apradiso.2009.01.020

    Article  Google Scholar 

  20. 20.

    L. Pujol, J.A. Suarez-Navarro, M. Montero, A method for the selection of the optimum counting conditions in a ZnS(Ag) scintillation detector. Appl. Radiat. Isot. 52, 891–897 (2000). doi:10.1016/s0969-8043(99)00139-6

    Article  Google Scholar 

  21. 21.

    R. Chen, D. Li, B. Liu et al., Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature. Nano Lett. 10, 4956–4961 (2010). doi:10.1021/nl102987z

    Article  Google Scholar 

  22. 22.

    D.A. Reddy, D.H. Kim, S.J. Rhee et al., Tunable blue-green-emitting wurtzite ZnS: Mg nanosheet-assembled hierarchical spheres for near-UV white LEDs. Nanoscale Res. Lett. 9, 1–8 (2014). doi:10.1186/1556-276X-9-20

    Article  Google Scholar 

  23. 23.

    X. Zeng, W. Zhang, J. Cui et al., Charge transfer and optical properties of wurtzite-type \(\text{ ZnS }/(\text{ CdS }/\text{ ZnS })_{n} (n= 2, 4, 8)\) superlattices. Mater. Res. Bull. 50, 359–364 (2014). doi:10.1016/j.materresbull.2013.11.010

    Article  Google Scholar 

  24. 24.

    W. Zhang, X.H. Zeng, H.F. Liu et al., Synthesis and investigation of blue and green emissions of ZnS ceramics. J. Lumin. 134, 498–503 (2013). doi:10.1016/j.jlumin.2012.07.039

    Article  Google Scholar 

  25. 25.

    H.C. Ong, R.PH Chang. Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry. Appl. Phys. Lett. 79, 3612–3614 (2001). doi:10.1063/1.1419229

    Article  Google Scholar 

  26. 26.

    X.B. Zhang, H.W. Song, L.X. Yu et al., Surface states and its influence on luminescence in ZnS nanocrystallite. J. Lumin. 118, 251–256 (2006). doi:10.1016/j.jlumin.2005.07.003

    Article  Google Scholar 

  27. 27.

    C.H. Ye, X.S. Fang, G.H. Li et al., Origin of the green photoluminescence from zinc sulfide nanobelts. Appl. Phys. Lett. 85, 3035–3037 (2004). doi:10.1063/1.1807018

    Article  Google Scholar 

  28. 28.

    T. Mitsui, N. Yamamoto, T. Tadokoro et al., Cathodoluminescence image of defects and luminescence centers in ZnS/GaAs (100). J. Appl. Phys. 80, 6972–6979 (1997). doi:10.1063/1.363770

    Article  Google Scholar 

  29. 29.

    K. Wang, J. Chen, Z. Zeng et al., Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays. Appl. Phys. Lett. 96(12), 123105 (2010). doi:10.1063/1.3367706

    Article  Google Scholar 

  30. 30.

    M.C. Payne, M.P. Teter, C. Allan et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992). doi:10.1103/revmodphys.64.1045

    Article  Google Scholar 

  31. 31.

    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). doi:10.1103/physrevlett.77.3865

    Article  Google Scholar 

  32. 32.

    E.H. Cui, Y.Z. Zhao, C. Yan et al., First-principles calculations for electronic, optical and thermodynamic properties of ZnS. Chin. Phys. B 17, 3867–3874 (2008). doi:10.1088/1674-1056/17/10/053

    Article  Google Scholar 

  33. 33.

    B. Gilbert, B.H. Frazer, H. Zhang et al., X-ray absorption spectroscopy of the cubic and hexagonal polytypes of zinc sulfide. Phys. Rev. B. 66, 245205 (2002). doi:10.1103/PhysRevB.66.245205

    Article  Google Scholar 

  34. 34.

    A. Goldmann, W. Gudat, O. Rader, Electronic Structure of Solids: Photoemission Spectra and Related Data (Springer, New York, 1994)

    Google Scholar 

  35. 35.

    J.P. Perdew, S. Kurth, A. Zupan et al., Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation. Phys. Rev. Lett. 82, 2544 (1999). doi:10.1103/PhysRevLett.82.2544

    Article  Google Scholar 

  36. 36.

    G. Onida, L. Reining, A. Rubio, Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601 (2002). doi:10.1103/RevModPhys.74.601

    Article  Google Scholar 

  37. 37.

    R.O. Jones, Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897 (2015). doi:10.1103/RevModPhys.87.897

    MathSciNet  Article  Google Scholar 

  38. 38.

    Q. Li, C. Wang, Fabrication of wurtzite ZnS nanobelts via simple thermal evaporation. Appl. Phys. Lett. 83, 359–361 (2003). doi:10.1063/1.1591999

    Article  Google Scholar 

  39. 39.

    O. Zakharov, A. Rubio, X. Blase et al., Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys. Rev. B 50, 10780–10787 (1994). doi:10.1103/physrevb.50.10780

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Qiang Zhao.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11275071 and 11305061), the Fundamental Research Funds for the Central Universities (Nos. 2014MS53 and 2014ZZD09), and the Student’s Platform for Innovation and Entrepreneurship Training Program of North China Electric Power University (No. 15129).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, DY., Zhang, Z., Liang, RX. et al. Electronic structure and optical properties of the scintillation material wurtzite ZnS(Ag). NUCL SCI TECH 28, 32 (2017).

Download citation


  • Wurtzite ZnS
  • Electronic structure
  • Optical properties
  • First-principle