Alignment calibration and performance study of the STAR PXL detector

Abstract

We report in this paper the alignment calibration of the STAR pixel detector (PXL) prototype for the RHIC 2013 run and performance study of the full PXL detector installed and commissioned in the RHIC 2014 run. PXL detector is the innermost two silicon layers of the STAR heavy flavor tracker aiming at high-precision reconstruction of secondary decay vertex of heavy flavor particles. To achieve the physics goals, the calibration work was done on the detector with high precision. A histogram-based method was successfully applied for the alignment calibration, and the detector efficiency after alignment was studied using both \(p+p\) collision data and cosmic ray data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    S.A. Chin, Transition to hot quark matter in relativistic heavy-ion collision. Phys. Lett. B 78, 552 (1978). doi:10.1016/0370-2693(78)90637-8

    Article  Google Scholar 

  2. 2.

    J.I. Kapusta, Quantum chromodynamics at high temperature. Nucl. Phys. B 148, 461 (1979). doi:10.1016/0550-3213(79)90146-9

    Article  Google Scholar 

  3. 3.

    F.M. Liu, Explore QCD phase transition with thermal photons. Nucl. Sci. Tech. 24, 050524 (2013). doi:10.13538/j.1001-8042/nst.2013.05.024

    Google Scholar 

  4. 4.

    H. Hahn, E. Forsyth, H. Foelsche et al., The RHIC design overview. Nucl. Instrum. Methods A 499, 245–263 (2003). doi:10.1016/S0168-9002(02)01938-1

    Article  Google Scholar 

  5. 5.

    Z. Lin, M. Gyulassy, Nuclear gluon shadowing via continuum lepton pairs in \(p+A\) at \(\sqrt{s}= 200\,A\) GeV. Phys. Rev. Lett. 77, 1222–1225 (1996). doi:10.1103/PhysRevLett.77.1222

    Article  Google Scholar 

  6. 6.

    Y. Zhang, J. Bouchet, X. Dong et al., Study of bottom production with the STAR Heavy Flavor Tracker. J. Phys. G Nucl. Part. Phys. 41, 025103 (2014). doi:10.1088/0954-3899/41/2/025103

    Article  Google Scholar 

  7. 7.

    L. Adamczyk, G. Agakishiev, M.M. Aggarwal et al., (STAR), Measurements of \(D^0\) and \(D^\ast \) production in \(p+p\) collisions at \(\sqrt{s}= 200\) GeV. Phys. Rev. D 86, 072013 (2012). doi:10.1103/PhysRevD.86.072013

    Article  Google Scholar 

  8. 8.

    L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR), Observation of \(D^0\) meson nuclear modifications in Au + Au collisions at \(\sqrt{s_{\text{ NN }}}= 200\) GeV. Phys. Rev. Lett. 113, 142301 (2014). doi:10.1103/PhysRevLett.113.142301

    Article  Google Scholar 

  9. 9.

    K.H. Ackermann, N. Adams, C. Adler et al., STAR detector overview. Nucl. Instrum. Methods A 499, 624–632 (2003). doi:10.1016/S0168-9002(02)01960-5

    Article  Google Scholar 

  10. 10.

    HFT proposal, http://rnc.lbl.gov/wieman/hft-final-submission-version.pdf

  11. 11.

    D. Beavis et al., The STAR Heavy Flavor Tracker Technical Design Report, https://drupal.star.bnl.gov/STAR/starnotes/public/sn0600

  12. 12.

    W.J. Llope et al., Multigap RPCs in the STAR experiment at RHIC. Nucl. Instrum. Methods A 661, S110–S113 (2012). doi:10.1016/j.nima.2010.07.086

    Article  Google Scholar 

  13. 13.

    M. Anderson, J. Berkovitz, W. Betts et al., The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Methods A 499, 659–678 (2003). doi:10.1016/S0168-9002(02)01964-2

    Article  Google Scholar 

  14. 14.

    M. Beddo, E. Bielick, T. Fornek et al., The STAR barrel electromagnetic calorimeter. Nucl. Instrum. Methods A 499, 725–739 (2003). doi:10.1016/S0168-9002(02)01970-8

    Article  Google Scholar 

  15. 15.

    STAR Collaboration, J. Adams, M.M. Aggarwal, Z. Ahammed et al., Pion, kaon, proton and anti-proton transverse momentum distributions from p + p and d + Au collisions at \(\sqrt{s_{\text{ NN }}}= 200\) GeV. Phys. Lett. B 616, 8–16 (2005). doi:10.1016/j.physletb.2005.04.041

  16. 16.

    C. Hu-Guo, J. Baudot, G. Bertolone et al., First reticule size MAPS with digital output and integrated zero suppression for the EUDET-JRA1 beam telescope. Nucl. Instrum. Methods A 623, 480–482 (2010). doi:10.1016/j.nima.2010.03.043

    Article  Google Scholar 

  17. 17.

    V. Karimaki et al., The HIP algorithm for track based alignment and its application to the CMS detector, CERN-CMS-NOTE-2006-018

  18. 18.

    V. Karimaki et al., Sensor alignment by traks—2003. Presented at CHEP. CMS CR-2004/009

  19. 19.

    X. Qin, R. Zhou, J.F. Han et al., GEANT4 simulation of the characteristic gamma-ray spectrum of TNT under soil induced by DT neutrons. Nucl. Sci. Tech. 26, 010501 (2015). doi:10.13538/j.1001-8042/nst.26.010501

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu-Gang Ma.

Additional information

This work was supported in part by the National Natural Science Foundation of China (No. 11421505) and the Major State Basic Research Development Program in China (No. 2014CB845400).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Dong, X., Qiu, H. et al. Alignment calibration and performance study of the STAR PXL detector. NUCL SCI TECH 28, 25 (2017). https://doi.org/10.1007/s41365-016-0177-4

Download citation

Keywords

  • Alignment calibration
  • Heavy flavor tracker
  • STAR