Skip to main content

Production of neutron-rich exotic nuclei in projectile fragmentation at Fermi energies

Abstract

Isotopic fragment yields of projectile fragmentation in peripheral collisions of \(^{86}\hbox {Kr}\) on \(^{124,112}\hbox {Sn}\) and the mean neutron-to-proton ratios of the fragments are calculated, theoretically, within the ensemble approach of statistical multifragmentation model. Obtained data are compared to the experimental cross-section measurements for the projectile-like fragmentation in the reaction of 25 MeV/nucleon \(^{86}\hbox {Kr}\)+\(^{124,112}\hbox {Sn}\) at Texas A&M University. We show the enhancement in the production of neutron-rich isotopes close to the projectile as observed in the experiments. We also demonstrate the universality of the limitation of the excitation energy induced in the projectile residues.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    A. Kelić, K.-H. Schmidt, T. Enqvist et al., Isotopic and velocity distributions of Bi83 produced in charge-pickup reactions of Pb82208 at 1A GeV. Phys. Rev. C 70, 064608 (2004). doi:10.1103/PhysRevC.70.064608

    Article  Google Scholar 

  2. 2.

    M. Bernas, C. Engelmann, P. Armbruster et al., Discovery and cross-section measurement of 58 new fission products in projectile-fission of 750 A MeV \(^{238}\)U. Phys. Lett. B 415, 111–116 (1997). doi:10.1016/S0370-2693(97)01216-1

    Article  Google Scholar 

  3. 3.

    H. Geissel, P. Armbruster, K.H. Behr et al., The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions. Nucl. Instr. Meth. B 70, 286–297 (1992). doi:10.1016/0168-583X(92)95944-M

    Article  Google Scholar 

  4. 4.

    H.M. Devaraja, S. Heinz, O. Beliuskina et al., Observation of new neutron-deficient isotopes with Z\(\ge \)92 in multinucleon transfer reactions. Phys. Lett. B 748, 199–203 (2015). doi:10.1016/j.physletb.2015.07.006

    Article  Google Scholar 

  5. 5.

    O. Beliuskina, S. Heinz, V. Zagrebaev et al., On the synthesis of neutron-rich isotopes along the N = 126 shell in multinucleon transfer reactions. Eur. Phys. J. A 50, 161 (2014). doi:10.1140/epja/i2014-14161-3

    Article  Google Scholar 

  6. 6.

    P.N. Fountas, G.A. Souliotis, M. Veselsky et al., Systematic study of neutron-rich rare isotope production in peripheral heavy-ion collisions below the Fermi energy. Phys. Rev. C 90, 064613 (2014). doi:10.1103/PhysRevC.90.064613

    Article  Google Scholar 

  7. 7.

    G.A. Souliotis, M. Veselsky, G. Chubarian et al., Enhanced production of neutron-rich rare isotopes in peripheral collisions at fermi energies. Phys. Rev. Lett. 91, 022701 (2003). doi:10.1103/PhysRevLett.91.022701

    Article  Google Scholar 

  8. 8.

    A. Adare, S. Afanasiev, C. Aidala et al., Detailed measurement of the \(e^{+}+e^{-}\) pair continuum in \(p+p\) and \(Au+Au\) collisions at \(sNN=200\) GeV and implications for direct photon production. Phys. Rev. C 81, 034911 (2010). doi:10.1103/PhysRevC.81.034911

    Article  Google Scholar 

  9. 9.

    D.V. Shetty, S.J. Yennello, G.A. Souliotis, Density dependence of the symmetry energy and the nuclear equation of state: a dynamical and statistical model perspective. Phys. Rev. C 76, 024606 (2007). doi:10.1103/PhysRevC.76.024606

    Article  Google Scholar 

  10. 10.

    G.A. Souliotis, M. Veselsky, G. Chubarian et al., Enhanced production of neutron-rich rare isotopes in the reaction of 25 MeV/nucleon Kr-86 on Ni-64. Phys. Lett. B 543, 163–172 (2002). doi:10.1016/S0370-2693(02)02459-0

    Article  Google Scholar 

  11. 11.

    Y.X. Zhang, C.S. Zhou, J.X. Chen et al., Correlation between the fragmentation modes and light charged particles emission in heavy ion collisions. Sci. China-Phys. Mech. Astron. 58, 112002 (2015). doi:10.1007/s11433-015-5723-2

    Article  Google Scholar 

  12. 12.

    S. Barlini, S. Piantelli, G. Casini et al., Isospin transport in \(^{84}\text{ Kr }\)+\(^{112,124}\text{ Sn }\) collisions at Fermi energies. Phys. Rev. C 87, 054607 (2013). doi:10.1103/PhysRevC.87.054607

    Article  Google Scholar 

  13. 13.

    Y.G. Ma, Application of information theory in nuclear liquid gas phase transition. Phys. Rev. Lett. 83, 3617–3620 (1999). doi:10.1103/PhysRevLett.83.3617

    Article  Google Scholar 

  14. 14.

    A.S. Botvina, I.N. Mishustin, Statistical evolution of isotope composition of nuclear fragments. Phys. Rev. C 63, 061601(R) (2001). doi:10.1103/PhysRevC.63.061601

    Article  Google Scholar 

  15. 15.

    J.P. Bondorf, A.S. Botvina, A.S. Iljinov et al., Statistical multifragmentation of nuclei. Phys. Rep. 257, 133–221 (1995). doi:10.1016/0370-1573(94)00097-M

    Article  Google Scholar 

  16. 16.

    H. Imal, A. Ergun, N. Buyukcizmeci et al., Theoretical study of projectile fragmentation in the reactions \(^{112}\text{ Sn }\)+\(^{112}\text{ Sn }\) and \(^{124}\text{ Sn }\)+\(^{124}\text{ Sn }\) at 1 GeV/nucleon. Phys. Rev. C 91, 034605 (2015). doi:10.1103/PhysRevC.91.034605

    Article  Google Scholar 

  17. 17.

    R. Ogul, A.S. Botvina, U. Atav et al., Isospin-dependent multifragmentation of relativistic projectiles. Phys. Rev. C 83, 024608 (2011). doi:10.1103/PhysRevC.83.024608

    Article  Google Scholar 

  18. 18.

    R. Ogul, U. Atav, F. Bulut et al., Surface and symmetry energies in isoscaling for multifragmentation reactions. J. Phys. G: Nucl. Part. Phys. 36, 115106 (2009). doi:10.1088/0954-3899/36/11/115106

    Article  Google Scholar 

  19. 19.

    N. Buyukcizmeci, H. Imal, R. Ogul et al., Isotopic yields and symmetry energy in nuclear multifragmentation reactions. J. Phys. G: Nucl. Part. Phys. 39, 115102 (2012). doi:10.1088/0954-3899/39/11/115102

    Article  Google Scholar 

  20. 20.

    A. Ergun, H. Imal, N. Buyukcizmeci et al., Influence of angular momentum and Coulomb interaction of colliding nuclei on their multifragmentation. Phys. Rev. C 92, 014610 (2015). doi:10.1103/PhysRevC.92.014610

    Article  Google Scholar 

  21. 21.

    A.S. Botvina, A.S. Iljinov, K.K. Gudima et al., Multifragmentation of highly excited nuclei in nucleus-nucleus collisions at intermediate-energies. Phys. At. Nucl. 57, 628–635 (1994)

    Google Scholar 

  22. 22.

    A.S. Botvina, I.N. Mishustin, M. Begemann-Blaich et al., Multifragmentation of spectators in relativistic heavy ion reactions. Nucl. Phys. A 584, 737–756 (1995). doi:10.1016/0375-9474(94)00621-S

    Article  Google Scholar 

  23. 23.

    N. Buyukcizmeci, A. Ergun, H. Imal et al., Nucl. Sci. Tech. 26, S20507 (2015). doi:10.13538/j.1001-8042/nst.26.S20507

    Google Scholar 

  24. 24.

    A.S. Botvina, I.N. Mishustin, Statistical approach for supernova matter. Nucl. Phys. A 843, 98–132 (2010). doi:10.1016/j.nuclphysa.2010.05.052

    Article  Google Scholar 

  25. 25.

    N. Buyukcizmeci, A.S. Botvina, I.N. Mishustin et al., A comparative study of statistical models for nuclear equation of state of stellar matter. Nucl. Phys. A 907, 13–54 (2013). doi:10.1016/j.nuclphysa.2013.03.010

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Buyukcizmeci.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogul, R., Buyukcizmeci, N., Ergun, A. et al. Production of neutron-rich exotic nuclei in projectile fragmentation at Fermi energies. NUCL SCI TECH 28, 18 (2017). https://doi.org/10.1007/s41365-016-0175-6

Download citation

Keywords

  • Projectile fragmentation
  • Peripheral collisions
  • Isotope productions
  • Universality