Skip to main content

FPGA-based α/γ pulse shape discrimination for BaF2 detector using 2-GSPS fast waveform sampling

Abstract

Four FPGA-based α/γ pulse shape discrimination algorithms for BaF2 detector are investigated and compared in this paper. A 2-GSPS fast waveform sampling board based on DRS4 chip is employed to sample the pulses. The test results with a 22Na γ-source and the natural radioactivity of BaF2 show good discrimination performance of the algorithms, with false rates around 1%. Small logical resource occupancy and short dead time are achieved. About 4400 slices are used in FPGA for pulse sampling and real-time discrimination altogether.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    M. Laval, M. Moszyński, R. Allemand et al., Barium fluoride—inorganic scintillator for subnanosecond timing. J Nucl. Instrum. Methods Phys. Res. 206, 169–176 (1983). doi:10.1016/0167-5087(83)91254-1

    Article  Google Scholar 

  2. 2.

    F. Amorini, E. De Filippo, P. Guazzoni et al., Digital pulse shape acquisition from BaF2: preliminary results. Paper presented at the 2006 IEEE nuclear science symposium conference record, IEEE, San Diego, 29 Oct–1 Nov 2006

  3. 3.

    R. Novotny, Performance of the BaF2-calorimeter TAPS. J. Nucl. Phys. B Proc. Suppl. 61, 137–142 (1998). doi:10.1016/S0920-5632(97)00552-5

    Article  Google Scholar 

  4. 4.

    K. Wisshak, F. Käppeler, Large barium fluoride detectors. J. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 227, 91–96 (1984). doi:10.1016/0168-9002(84)90105-0

    Article  Google Scholar 

  5. 5.

    E. Dafni, A note on the application of BaF2 scintillators to γ-ray and charged particle detection. J. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 254, 54–60 (1987). doi:10.1016/0168-9002(87)90481-5

    Article  Google Scholar 

  6. 6.

    E. De Filippo, G. Lanzanó, A. Pagano et al., A study of light quenching in BaF2 crystals for heavy ions at intermediate energies. J. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 342, 527–533 (1994). doi:10.1016/0168-9002(94)90282-8

    Article  Google Scholar 

  7. 7.

    G. Lanzanó, A. Pagano, S. Urso et al., Using BaF2 crystals as detectors of light charged particles at intermediate energies. J. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 312, 515–520 (1992). doi:10.1016/0168-9002(92)90199-E

    Article  Google Scholar 

  8. 8.

    J. Gál, G. Kalinka, B.M. Nyakó et al., Particle discriminator for the identification of light charged particles with CsI (Tl) scintillator + PIN photodiode detector. J. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 366, 120–128 (1995). doi:10.1016/0168-9002(95)00560-9

    Article  Google Scholar 

  9. 9.

    R. Aryaeinejad, J.K. Hartwell, D.F. Spencer, Comparison between digital and analog pulse shape discrimination techniques for neutron and gamma ray separation. Paper presented at the 2005 IEEE nuclear science symposium conference record, IEEE, Fajardo, 23–29 Oct 2005

  10. 10.

    J.M. Adams, G. White, A versatile pulse shape discriminator for charged particle separation and its application to fast neutron time-of-flight spectroscopy. J. Nuclear Instrum. Methods 156, 459–476 (1978). doi:10.1016/0029-554X(78)90746-2

    Article  Google Scholar 

  11. 11.

    B. D’Mellow, M.D. Aspinall, R.O. Mackin et al., Digital discrimination of neutrons and γ-rays in liquid scintillators using pulse gradient analysis. J. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 578, 191–197 (2007). doi:10.1016/j.nima.2007.04.174

    Article  Google Scholar 

  12. 12.

    S. Ritt, Design and performance of the 6 GHz waveform digitizing chip DRS4. Paper presented at the 2008 IEEE nuclear science symposium conference record, IEEE, Dresden, 19–25 Oct 2008

  13. 13.

    J.H. Wang, L. Zhao, C.Q. Feng et al., Evaluation of a fast pulse sampling module with switched-capacitor arrays. J. IEEE Trans. Nucl. Sci. 59, 2435–2443 (2012). doi:10.1109/TNS.2012.2208656

    Article  Google Scholar 

  14. 14.

    Xilinx, Spartan-3 FPGA Family Data Sheet (Xilinx Inc, 2013). http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf. Accessed 15 Aug 2016

  15. 15.

    J.Y. Tang, S.N. Fu, H.T. Jing et al., J. Chin. Phys. C 34, 121 (2010)

    Article  Google Scholar 

  16. 16.

    B. He, P. Cao, D.L. Zhang et al., Clock distributing for BaF2 readout electronics at CSNS-WNS. arXiv:1602.06635 [physics.ins-det]

Download references

Acknowledgements

The authors would thank Prof. Stefan Ritt and Dr. Jinhong Wang for their help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chang-Qing Feng.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11205154).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, CF., Feng, CQ., Liu, SB. et al. FPGA-based α/γ pulse shape discrimination for BaF2 detector using 2-GSPS fast waveform sampling. NUCL SCI TECH 28, 19 (2017). https://doi.org/10.1007/s41365-016-0173-8

Download citation

Keywords

  • BaF2
  • Pulse extraction
  • α/γ Discrimination
  • DRS4
  • FPGA