Skip to main content

Local structural evolutions of CuO/ZnO/Al2O3 catalyst for methanol synthesis under operando conditions studied by in situ quick X-ray absorption spectroscopy

Abstract

In situ quick X-ray absorption spectroscopy (QXAFS) at the Cu and Zn K-edge under operando conditions has been used to unravel the Cu/Zn interaction and identify possible active site of CuO/ZnO/Al2O3 catalyst for methanol synthesis. In this work, the catalyst, whose activity increases with the reaction temperature and pressure, was studied at calcined, reduced, and reacted conditions. TEM and EDX images for the calcined and reduced catalysts showed that copper was distributed uniformly at both conditions. TPR profile revealed two reduction peaks at 165 and 195 °C for copper species in the calcined catalyst. QXAFS results demonstrated that the calcined form consisted mainly of a mixed CuO and ZnO, and it was progressively transformed into Cu metal particles and dispersed ZnO species as the reduction treatment. It was demonstrated that activation of the catalyst precursor occurred via a Cu+ intermediate, and the active catalyst predominantly consisted of metallic Cu and ZnO even under higher pressures. Structure of the active catalyst did not change with the temperature or pressure, indicating that the role of the Zn was mainly to improve Cu dispersion. This indicates the potential of QXAFS method in studying the structure evolutions of catalysts in methanol synthesis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Mauna Loa Observatory, Hawaii. http://co2now.org/(2014)

  2. 2.

    K.M.K. Yu, I. Curcic, J. Gabriel et al., Recent advances in CO2 capture and utilization. Chem. Sus. Chem. 1, 893–899 (2008). doi:10.1002/cssc.201090023

    Article  Google Scholar 

  3. 3.

    W. Wang, S.P. Wang, X.B. Ma et al., Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727 (2011). doi:10.1039/clcs15008a

    Article  Google Scholar 

  4. 4.

    G. Centi, E.A. Quadrelli, S. Perathoner, Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 6, 1711–1731 (2013). doi:10.1039/C3EE00056G

    Article  Google Scholar 

  5. 5.

    G.A. Olah, G.K.S. Prakash, A. Goeppert, Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 133, 12881–12898 (2011). doi:10.1021/ja202642y

    Article  Google Scholar 

  6. 6.

    G.A. Olah, Jenseits von öl und Gas: die Methanolwirtschaft. Angew. Chem. 117, 2692–2696 (2005). doi:10.1002/ange.200462121

    Article  Google Scholar 

  7. 7.

    G.A. Olah, Beyond oil and gas: the methanol economy. Angew. Chem. Int. Ed. 44, 2636–2639 (2005). doi:10.1002/anie.200462121

    Article  Google Scholar 

  8. 8.

    P. Gao, F. Li, F.K. Xiao et al., Effect of hydrotalcite-containing precursors on performance of Cu/Zn/Al/Zr catalysts for CO2 hydrogenation: introduction of Cu2+ at different formation stages of precursors. Catal. Today 194, 9–15 (2012). doi:10.1016/j.cattod.2012.06.012

    Article  Google Scholar 

  9. 9.

    U. Olsbye, S. Svelle, M. BjØgen et al., Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew. Chem. 51, 5810–5831 (2012). doi:10.1002/aine.201103657

    Article  Google Scholar 

  10. 10.

    E.E. Ortelli, J. Wambach, A. Wokaun, Methanol synthesis reactions over CuZr based catalyst investigated using periodic variations of reaction concentrations. Appl. Catal. A 216, 227–241 (2001). doi:10.1016/S0926-860X(01)00569-5

    Article  Google Scholar 

  11. 11.

    A.K. Shukla, P.A. Christensen, A.J. Dickinson et al., A liquid-feed solid polymer electrolyte direct methanol fuel cell operating at near-ambient conditions. J. Power Sources 76, 54–59 (1998). doi:10.1016/S0378-7753(98)00140-2

    Article  Google Scholar 

  12. 12.

    G.C. Chinchen, K.C. Waugh, D.A. Whan, The activity and state of the copper surface in methanol synthesis catalysts. Appl. Catal. 25, 101–107 (1986). doi:10.1016/S0166-9834(00)81226-9

    Article  Google Scholar 

  13. 13.

    F. Liao, Y.Q. Huang, J.W. Ge et al., Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH. Angew. Chem. 123, 2210–2213 (2011). doi:10.1002/anie.201007108

    Article  Google Scholar 

  14. 14.

    P. Gao, F. Li, H.J. Zhan et al., Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. J. Catal. 298, 51–60 (2013). doi:10.1016/j.jcat.2012.10.030

    Article  Google Scholar 

  15. 15.

    M. Behrens, F. Studt, I. Kasatkin et al., The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012). doi:10.1126/science.1219831

    Article  Google Scholar 

  16. 16.

    Y.Q. Cen, X.N. Li, H.Z. Liu, Preparation of copper-based catalysts for methanol synthesis by acid-alkali-based alternate precipitation method. Chin. J. Catal. 27, 210–216 (2006). doi:10.1016/S1872-2067(06)60014-4

    Article  Google Scholar 

  17. 17.

    J.J. Wu, X.D. Zhou, Catalytic conversion of CO2 to value added fuels: current status, challenges, and future directions. Chin. J. Catal. 37, 999–1015 (2016). doi:10.1016/S1872-2067(16)62455-5

    Article  Google Scholar 

  18. 18.

    J. Nakamura, Y. Choi, T. Fujitani, On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts. Top. Catal. 22, 277–285 (2003). doi:10.1023/A:1023588322846

    Article  Google Scholar 

  19. 19.

    J.D. Grunwaldt, A.M. Molenbroek, N.Y. Topsøe, H. Topsøe, In situ investigations of structural changes in Cu/ZnO catalysts. J. Catal. 194(45), 452–460 (2000). doi:10.1006/jcat.2000.2930

    Article  Google Scholar 

  20. 20.

    T. Fujitani, J. Nakamura, The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity. Catal. Lett. 56, 119–124 (1998). doi:10.1023/A:1019000927366

    Article  Google Scholar 

  21. 21.

    L. Dong, X.J. Yao, Y. Chen, Interactions among supported copper based catalyst components and their effects on performance: a review. Chin. J. Catal. 34, 851–864 (2013). doi:10.1016/S1872-2067(12)60592-0

    Article  Google Scholar 

  22. 22.

    B. Denise, R.P.A. Sneeden, B. Beguin et al., Supported copper catalysts in the synthesis of methanol: N2O-titrations. Appl. Catal. 30, 353–358 (1987). doi:10.1016/S0166-9834(00)84125-1

    Article  Google Scholar 

  23. 23.

    T.H. Fleisch, R.L. Miecille, Studies on the chemical state of Cu during methanol synthesis. J. Catal. 90, 165–171 (1984). doi:10.1016/0021-9517(84)90099-X

    Article  Google Scholar 

  24. 24.

    W.X. Pan, R. Cao, D.L. Roberts et al., Methanol synthesis activity of CuZnO catalysts. J. Catal. 114, 440–444 (1988). doi:10.1016/0021-9517(88)90047-4

    Article  Google Scholar 

  25. 25.

    J.F. Deng, Q. Sun, Y.L. Zhang et al., A novel process for preparation of a Cu/ZnO/Al2O3 ultrafine catalyst for methanol synthesis from CO2 + H2: comparison of various preparation methods. Appl. Catal. A 139, 75–80 (1996). doi:10.1016/0926-860X(95)00324-X

    Article  Google Scholar 

  26. 26.

    G.C. Chinchen, K.C. Waugh, D.A. Whan, The activity and state of the copper surface in methanol synthesis catalysts. Appl. Catal. 25, 48–51 (1986). doi:10.1016/S0166-9834(00)81226-9

    Article  Google Scholar 

  27. 27.

    G.C. Chinchen, M.C. Spencer, K.C. Waugh et al., Promotion of methanol synthesis and the water-gas shift reactions by adsorbed oxygen on supported copper catalysts. J. Chem Soc Farady Trans. I 83, 2193–2200 (1987). doi:10.1039/F19878302193

    Article  Google Scholar 

  28. 28.

    R.G. Herman, K. Klier, G.W. Simmons et al., Catalytic synthesis of methanol from COH2: I. Phase composition, electronic properties, and activities of the Cu/ZnO/M2O3 catalysts. J. Catal. 56, 407–410 (1979). doi:10.1016/0021-9517(79)90132-5

    Article  Google Scholar 

  29. 29.

    H.Y. Chen, S.P. Lau, L. Chen et al., Synergism between Cu and Zn sites in Cu/Zn catalysts for methanol synthesis. Appl. Surf. Sci. 152, 193–198 (1999). doi:10.1016/S0169-4332(99)00317-7

    Article  Google Scholar 

  30. 30.

    Y. Kanai, T. Watanable, T. Fujtitani et al., The synergy between Cu and ZnO in methanol synthesis catalysts. Catal. Lett. 38, 157–163 (1996). doi:10.1007/BF00806562

    Article  Google Scholar 

  31. 31.

    T. Fujitani, J. Nakamura, The chemical modification seen in the Cu/ZnO methanol synthesis catalysts. Appl. Catal. A 191, 111–129 (2000). doi:10.1016/S0926-860X(99)00313-0

    Article  Google Scholar 

  32. 32.

    D.E. Sayers, E.A. Stern, F.W. Lytle, New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray absorption fine structure. Phys. Rev. Lett. 27, 1204–1207 (1971). doi:10.1103/PhysRevLett.27.1204

    Article  Google Scholar 

  33. 33.

    J. Singh, C. Lamberti, J.A. Bokhoven, Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem. Soc. Rev. 39, 4754–4766 (2010). doi:10.1039/c0cs00054j

    Article  Google Scholar 

  34. 34.

    H.L. Bao, X.P. Sun, J. Zheng et al., Structural changes of Rh-Mn nanoparticles inside carbon nanotubes studied by X-ray absorption spectroscopy. Chin. J. Catal. 35, 1418–1427 (2014). doi:10.1016/S1872-2067(14)60081-4

    Article  Google Scholar 

  35. 35.

    A.E. Russell, A. Rose, X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem. Rev. 104, 4613–4635 (2004). doi:10.1002/chin.200450216

    Article  Google Scholar 

  36. 36.

    H.S. Yu, X.J. Wei, J. Li et al., The XAFS beamline of SSRF. Nucl. Sci. Tech. 26, 050102 (2015). doi:10.13538/j.1001-8042/nst.26.050102

    Google Scholar 

  37. 37.

    K. Evgeny, S. Jacinto, A.D. Jehad et al., Structure of the methanol synthesis catalyst determined by in situ HERFD XAS and EXAFS. Catal. Sci. Technol. 2, 373–378 (2012). doi:10.1039/c1cy00277e

    Article  Google Scholar 

  38. 38.

    S. Velu, K. Suzuki, C.S. Gopinath et al., XPS, XANES and EXAFS investigations of CuO/ZnO/Al2O3/ZrO2 mixed oxide catalysts. Phys. Chem. Chem. Phys. 4, 1990–1999 (2002). doi:10.1039/b109766k

    Article  Google Scholar 

  39. 39.

    D. Grandjean, V. Pelipenko, E.D. Batyrev et al., Dynamic Cu/Zn interaction in SiO2 supported methanol synthesis catalysts unraveled by in- situ XAFS. J. Phys. Chem. C 115, 20175–20191 (2011). doi:10.1021/jp201839s

    Article  Google Scholar 

  40. 40.

    J. Fang, F.C. Shi, H.Z. Bao et al., Evolution of surface and bulk structures of Ce x Ti1−x O2 oxide composites. Chin. J. Catal. 34, 2075–2083 (2013). doi:10.1016/S1872-2067(12)60667-6

    Article  Google Scholar 

  41. 41.

    K. Okumura, T. Honma, S. Hirayama et al., Stepwise growth of Pd clusters in USY zeolite at room temperature analyzed by QXAFS. J. Phys. Chem. C 112, 16740–16747 (2008). doi:10.1021/jp804381c

    Article  Google Scholar 

  42. 42.

    Q. Sun, Y.L. Zhang, H.Y. Chen et al., A novel process for the preparation of Cu/ZnO and Cu/ZnO/Al2O3 ultrafine catalyst: structure, surface properties, and activity for methanol synthesis from CO2 + H2. Chen. J. Catal. 167, 92–105 (1997). doi:10.1006/jcat.1997.1554

    Article  Google Scholar 

  43. 43.

    J. Yoshihara, C.T. Campbell, Methanol synthesis and reverse water–gas shift kinetics over Cu(110) model catalysts: structural sensitivity. J. Catal. 161, 776–782 (1996). doi:10.1006/jcat.1996.0240

    Article  Google Scholar 

  44. 44.

    X.S. Dong, F. Li, N. Zhao et al., CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Appl. Catal. B 191, 8–17 (2016). doi:10.1016/j.apcatb.2016.03.014

    Article  Google Scholar 

  45. 45.

    Z. Li, H.Y. Zheng, K.C. Xie, Surface properties of CuO/ZnO/Al2O3 catalyst for methanol synthesis in slurry reactor. Chin. J. Catal. 29, 431–435 (2008). doi:10.3321/j.issn:0253-9837.2008.05.005

    Google Scholar 

  46. 46.

    X.P. Sun, F.F. Sun, Z.H. Sun et al., Disorder effects on EXAFS modeling for catalysts working at elevated temperatures. Radiat. Phys. Chem. (2016). doi:10.1016/j.radphyschem.2016.01.039

    Google Scholar 

  47. 47.

    A. Yevick, A.I. Frenkel, Effect of surface disorder on EXAFS modeling of metallic clusters. Phys. Rev. B 81, 760–762 (2010). doi:10.1103/PhysRevB.81.115451

    Article  Google Scholar 

  48. 48.

    E.B. Batyrev, J.C.V.D. Heuvel, J. Beckers et al., The effect of the reduction temperature on the structure of Cu/ZnO/SiO2 catalysts for methanol synthesis. J. Catal. 229, 136–143 (2005). doi:10.1016/j.jcat.2004.10.012

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yu-Ying Huang or Zheng Jiang.

Additional information

This work was supported by the National Basic Research Program of China (973 Program, 2013CB933104) and the National Natural Science Foundation of China (Nos. 11275258 and 11135008).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, XP., Sun, FF., Gu, SQ. et al. Local structural evolutions of CuO/ZnO/Al2O3 catalyst for methanol synthesis under operando conditions studied by in situ quick X-ray absorption spectroscopy. NUCL SCI TECH 28, 21 (2017). https://doi.org/10.1007/s41365-016-0170-y

Download citation

Keywords

  • In situ
  • Quick X-ray absorption spectroscopy
  • CuO/ZnO/Al2O3 catalyst
  • Operando condition