Skip to main content

Particle dispersion modeling in ventilated room using artificial neural network

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Due to insufficiency of a platform based on experimental results for numerical simulation validation using computational fluid dynamic method (CFD) for different geometries and conditions, in this paper we propose a modeling approach based on the artificial neural network (ANN) to describe spatial distribution of the particles concentration in an indoor environment. This study was performed for a stationary flow regime. The database used to build the ANN model was deducted from bibliography literature and composed by 261 points of experimental measurement. Multilayer perceptron-type neural network (MLP-ANN) model was developed to map the relation between the input variables and the outputs. Several training algorithms were tested to give a choice of the Fletcher conjugate gradient algorithm (TrainCgf). The predictive ability of the results determined by simulation of the ANN model was compared with the results simulated by the CFD approach. The developed neural network was beneficial and easy to predict the particle dispersion curves compared to CFD model. The average absolute error given by the ANN model does not reach 5% against 18% by the Lagrangian model and 28% by the Euler drift-flux model of the CFD approach.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    F. Chen, C. Simon, A.C. Lai, Modeling particle distribution and deposition in indoor environments with a new drift-flux model. Atmos. Environ. 40, 357–367 (2006). doi:10.1016/j.atmosenv

    Article  Google Scholar 

  2. 2.

    A. Lai, K. Wang, F. Chen, Experimental and numerical study on particle distribution in a two-zone chamber. Atmos. Environ. 42(8), 1717–1726 (2008). doi:10.1016/j.atmosenv

    Article  Google Scholar 

  3. 3.

    J. Hanhui, L. Qingping, C. Lihua, Experimental analysis of particle concentration heterogeneity in a ventilated scale chamber. Atmos. Environ. 43(28), 4311–4318 (2009). doi:10.1016/j.atmosenv

    Article  Google Scholar 

  4. 4.

    Z. Bin, Y. Caiqing, Y. Xudong et al., Particle dispersion and deposition in ventilated rooms-testing and evaluation of different Eulerian and Lagrangian models. Build. Environ. 43, 388–397 (2008). doi:10.1016/j.buildenv

    Article  Google Scholar 

  5. 5.

    S. Murakami, S. Kato, S. Nagano et al., Diffusion characteristics of airborne particles with gravitational settling in a convection dominant indoor flow field. ASHRAE Trans. 98, 82–97 (1992)

    Google Scholar 

  6. 6.

    S. Holmberg, Q. Chen, Air flow and particle control with different ventilation systems in a classroom. Indoor Air 13(2), 200–204 (2003). doi:10.1034/j.1600-0668.2003.00186.x

    Article  Google Scholar 

  7. 7.

    T.J. Chang, Y.F. Hseih, H.M. Kao, Numerical investigation of airflow pattern and particulate matter transport in naturally ventilated multi-room buildings. Indoor Air 16, 136–152 (2006). doi:10.1111/j.1600-0668.2005.00410.x

    Article  Google Scholar 

  8. 8.

    L. Xiangdong, Y. Yihuan, S. Yidan et al., An Eulerian-Eulerian model for particulate matter transport in indoor spaces. Build. Environ. 86, 191–202 (2015). doi:10.1016/j.buildenv.2015.01.010

    Article  Google Scholar 

  9. 9.

    N.P. Gao, J.L. Niu, Modeling particle dispersion and deposition in indoor environments. Atmos. Environ. 41(18), 3862–3876 (2007). doi:10.1016/j.atmosenv.2007.01.016

    Article  Google Scholar 

  10. 10.

    B. Zhao, Y. Zhang, X. Li et al., Comparison of indoor aerosol particle concentration and deposition in different ventilated rooms by numerical method. Build. Environ. 39(1), 1–8 (2004). doi:10.1016/j.buildenv.2003.08.002

    Article  Google Scholar 

  11. 11.

    Z. Zhang, Q. Chen, Experimental measurements and numerical simulation of fine particle transport and distribution in ventilated rooms. Atmos. Environ. 40, 3396–3408 (2006). doi:10.1016/j.atmosenv.2006.01.014

    Article  Google Scholar 

  12. 12.

    C. Kao-Hua, K. Hong-Ming, C. Tsang-Jung, Lagrangian modeling of particle concentration distribution in indoor environment with different kernel functions and particle search algorithms. Build. Environ. 57, 81–87 (2012). doi:10.1016/j.buildenv.2012.04.017

    Article  Google Scholar 

  13. 13.

    C. Tsang-Jung, C. Kao-Hua, K. Hong-Ming et al., Comparison of a new kernel method and a sampling volume method for estimating indoor particulate matter concentration with Lagrangian modeling. Build. Environ. 54, 20–28 (2012). doi:10.1016/j.buildenv.2012.02.006

    Article  Google Scholar 

  14. 14.

    C. Tsang-Jung, K. Hong-Ming, S.Y. Rita, Lagrangian modeling of the particle residence time in indoor environment. Build. Environ. 62, 55–62 (2013). doi:10.1016/j.buildenv.2013.01.006

    Article  Google Scholar 

  15. 15.

    R.W. Blanning, The construction and implementation of metamodels. Simulation 24, 177–184 (1975). doi:10.1177/003754977502400606

    Article  MATH  Google Scholar 

  16. 16.

    H. Shamia, F. Bakhtier, N.H. Charles, Development of metamodels for predicting aerosol dispersion in ventilated spaces. Atmos. Environ. 45(10), 1876–1887 (2011). doi:10.1016/j.atmosenv.2010.12.046

    Article  Google Scholar 

  17. 17.

    D. Broad, G. Dandy, H. Maier, Water distribution system optimization using metamodels. J. Water Res. Plan. Manag. 131(3), 172–180 (2005). doi:10.1061/(ASCE)0733-9496(2005)131:3(172)

    Article  Google Scholar 

  18. 18.

    A. Ararem, A. Bouzidi, B. Mohamedi et al., Modeling of fixed-bed adsorption of Cs+ and Sr2+ onto clay–iron oxide composite using artificial neural network and constant-pattern wave approach. J. Radioanal. Nucl. Chem. 301(3), 881–887 (2014). doi:10.1007/s10967-014-3200-4

    Article  Google Scholar 

  19. 19.

    A. Bouzidi, S. Hanini, F. Souahi et al., Viscosity calculation at moderate pressure for nonpolar gases via neural network. J. Appl. Sci. 7(17), 2450–2455 (2007). doi:10.3923/jas.2007.2450.2455

    Article  Google Scholar 

  20. 20.

    E. Tabach, L. Ellancelot, I. Sharour et al., Use of artificial neural network simulation metamodelling to assess groundwater contamination in a road project. Math. Comput. Model. 45, 766–776 (2007). doi:10.1016/j.mcm.2006.07.020

    Article  Google Scholar 

  21. 21.

    L. Zhou, F. Haghighat, Optimization of ventilation system design and operation in office environment, part I, methodology. Build. Environ. 44(4), 651–656 (2009). doi:10.1016/j.buildenv.2008.05.009

    Article  Google Scholar 

  22. 22.

    L. Zhou, F. Haghighat, Optimization of ventilation system design and operation in office environment, part II, results and discussions. Build. Environ. 44(4), 657–665 (2009). doi:10.1016/j.buildenv.2008.05.010

    Article  Google Scholar 

  23. 23.

    K.R. Janes, P. Musilek, Modeling the disinfection of waterborne bacteria using neural networks. Environ. Eng. Sci. 24(4), 471–482 (2007). doi:10.1089/ees.2006.0069

    Article  Google Scholar 

  24. 24.

    B. Mohamedi, S. Hanini, A. Ararem et al., Simulation of nucleate boiling under ANSYS-FLUENT code by using RPI model coupling with artificial neural networks. Nucl. Sci. Tech. 26(4), 040601 (2015). doi:10.13538/j.1001-8042/nst.26.040601

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Athmane Gheziel.

Additional information

This work was supported by the Algerian Atomic Energy Commission. The authors are grateful for the financial support.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gheziel, A., Hanini, S., Mohamedi, B. et al. Particle dispersion modeling in ventilated room using artificial neural network. NUCL SCI TECH 28, 5 (2017).

Download citation


  • Numerical simulation
  • Computational fluid dynamic
  • Artificial neural network
  • Spatial distribution
  • Particle concentration
  • Indoor environment