Analysis of SBLOCA on CPR1000 with a passive system


Since the Fukushima accident in 2011, more and more attention has been paid to nuclear reactor safety. A number of evolutionary passive systems have been developed to enhance the inherent safety of reactors. This paper presents a passive safety system applied on CPR1000, which is a traditional generation II+ reactor. The passive components selected are as follows: (1) the reactor makeup tanks (RMTs); (2) the advanced accumulators (A-ACCs); (3) the passive emergency feedwater system (PEFS); (4) the passive depressurization system (PDS); (5) the in-containment refueling water storage tank (IRWST). The model of the coolant system and the passive systems was established by utilizing a system code (RELAP5/MOD3.3). The SBLOCA (small-break loss of coolant) was analyzed to test the passive safety systems. When the SBLOCA occurred, the RMTs were initiated. The water in the RMTs was then injected into the pressure vessel. The RMTs’ low water level triggered the PDS, which depressurized the coolant system drastically. As the pressure of the coolant system decreased, the A-ACCs and the IRWST were put to work to prevent the uncovering of the core. The results show that, after the small-break loss-of-coolant accident, the passive systems can prevent uncovering of the core and guarantee the safety of the plant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    Z.J. Xiao, W.B. Zhou, H. Zheng et al., Experimental research progress on passive safety systems of Chinese advanced PWR. Nucl. Eng. Des. 225, 305–313 (2003). doi:10.1016/S0029-5493(03)00178-X

    Article  Google Scholar 

  2. 2.

    P.E. Juhn, J. Kupitz, J. Cleveland et al., IAEA activities on passive safety systems and overview of international development. Nucl. Eng. Des. 201, 41–59 (2000). doi:10.1016/S0029-5493(00)00260-0

    Article  Google Scholar 

  3. 3.

    A.K. Nayak, R.K. Sinha, Role of passive systems in advanced reactors. Prog. Nucl. Energy 49, 486–498 (2007). doi:10.1016/j.pnucene.2007.07.007

    Article  Google Scholar 

  4. 4.

    A.K. Nayak, A. Chandrakar, G. Vinod, A review: passive system reliability analysis–accomplishments and unresolved issues. Front. Energy Reasear 2, 40 (2014). doi:10.3389/fenrg.2014.00040

    Google Scholar 

  5. 5.

    B.T. Timofeev, G.P. Karzov, Assessment of the WWER-1000 reactor condition. Int. J. Pres Vessels Pip. 83, 464–473 (2006). doi:10.1016/j.ijpvp.2005.11.008

    Article  Google Scholar 

  6. 6.

    M.D. Carelli, L.E. Conway, L. Oriani et al., The design and safety features of the IRIS reactor. Nucl. Eng. Des. 230, 151–167 (2004). doi:10.1016/j.nucengdes.2003.11.022

    Article  Google Scholar 

  7. 7.

    K.H. Bae, H.C. Kim, M.H. Chang et al., Safety evaluation of the inherent and passive safety features of the smart design. Ann. Nucl. Energy 28, 333–349 (2001). doi:10.1016/S0306-4549(00)00057-8

    Article  Google Scholar 

  8. 8.

    B. Sutharshan, M. Mutyala, R.P. Vijuk et al., The AP1000TM reactor: passive safety and modular design. Energy Procedia 7, 293–302 (2011). doi:10.1016/j.egypro.2011.06.038

    Article  Google Scholar 

  9. 9.

    Y. Tujikura, T. Oshibe, K. Kijima et al., Development of passive safety systems for Next Generation PWR in Japan. Nucl. Eng. Des. 201, 61–70 (2000). doi:10.1016/S0029-5493(00)00261-2

    Article  Google Scholar 

  10. 10.

    I.-C. Chu, C.-H. Song, B.H. Cho et al., Development of passive flow controlling safety injection tank for APR1400. Nucl. Eng. Des. 238, 200–206 (2008). doi:10.1016/j.nucengdes.2007.07.002

    Article  Google Scholar 

  11. 11.

    H. Hu, J. Shan, J. Gou et al., Simulation of advanced accumulator and its application in CPR1000 LBLOCA analysis. Ann. Nucl. Energy 69, 183–195 (2014). doi:10.1016/j.anucene.2014.01.037

    Article  Google Scholar 

  12. 12.

    Y. Zhang, S. Qiu, G. Su et al., Design and transient analyses of emergency passive residual heat removal system of CPR1000. Part I: air cooling condition. PROG NUCL. ENERG 53, 471–479 (2011). doi:10.1016/j.pnucene.2011.03.001

    Google Scholar 

  13. 13.

    J. Wu, Q. Bi, C. Zhou, Experimental study on circulation characteristics of secondary passive heat removal system for Chinese pressurized water reactor. Appl. Therm. Eng. 77, 106–112 (2015). doi:10.1016/j.applthermaleng.2014.12.014

    Article  Google Scholar 

  14. 14.

    J. Wu, Q. Bi, C. Zhou, American Society of mechanical engineers: experimental investigations on temperature distribution and heat removal capability of residual heat exchanger, ASME 2013 Power Conference, 2013

  15. 15.

    M. Gavrilas, N.E. Todreas, M.J. Driscoll, Containment passive-cooling design concepts. Prog. Nucl. Energy 32, 647–655 (1998). doi:10.1016/S0149-1970(97)00069-3

    Article  Google Scholar 

  16. 16.

    S.H. Chang, S.H. Kim, J.Y. Choi, Design of integrated passive safety system (IPSS) for ultimate passive safety of nuclear power plants. Nucl. Eng. Des. 260, 104–120 (2013). doi:10.1016/j.nucengdes.2013.03.018

    Article  Google Scholar 

  17. 17.

    A. Achilli, G. Cattadori, R. Ferri et al., Two new passive safety systems for LWR applications. Nucl. Eng. Des. 200, 383–396 (2000). doi:10.1016/S0029-5493(00)00256-9

    Article  Google Scholar 

  18. 18.

    C.S. Byun, D.W. Jerng, N.E. Todreas et al., Conceptual design and analysis of a semi-passive containment cooling system for a large concrete containment. Nucl. Eng. Des. 199, 227–242 (2000). doi:10.1016/S0029-5493(00)00228-4

    Article  Google Scholar 

  19. 19.

    M. Gavrilas, N.E. Todreas, M.J. Driscoll, The design and evaluation of a passively cooled containment for a high-rating pressurized water reactor. Nucl. Eng. Des. 200, 233–249 (2000). doi:10.1016/S0029-5493(99)00339-8

    Article  Google Scholar 

  20. 20.

    M. Hashim, H. Yoshikawa, T. Matsuoka et al., Quantitative dynamic reliability evaluation of AP1000 passive safety systems by using FMEA and GO-FLOW methodology. J. Nucl. Sci. Technol. 51, 526–542 (2014). doi:10.1080/00223131.2014.881727

    Article  Google Scholar 

  21. 21.

    A.C.F. Guimarães, C.M.F. Lapa, F.F.L.S. Filho et al., Fuzzy uncertainty modeling applied to AP1000 nuclear power plant LOCA. Ann. Nucl. Energy 38, 1775–1786 (2011). doi:10.1016/j.anucene.2011.02.005

    Article  Google Scholar 

  22. 22.

    M. Hashim, Y. Hidekazu, M. Takeshi et al., Application case study of AP1000 automatic depressurization system (ADS) for reliability evaluation by GO-FLOW methodology. Nucl. Eng. Des. 278, 209–221 (2014). doi:10.1016/j.nucengdes.2014.06.040

    Article  Google Scholar 

  23. 23.

    China Nuclear Power Technology Research Institution, Final Safety Analysis Report (FSAR) of Ling’ao Nuclear Power Plant Phase 2161,CGNPC CHN, 2008

Download references

Author information



Corresponding author

Correspondence to Jian-Qiang Shan.

Additional information

This work was supported by the National High-tech R&D Program of China (No. 2012AA050905).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, ZJ., Gou, JL., Shan, JQ. et al. Analysis of SBLOCA on CPR1000 with a passive system. NUCL SCI TECH 28, 10 (2017).

Download citation


  • Passive safety systems
  • RELAP5/MOD3.3
  • CPR1000