Skip to main content

α-Decay half-life screened by electrons

Abstract

In this paper, by considering the electrons in different external environments, including neutral atoms, a metal, and an extremely strong magnetic-field environment, the screened α-decay half-lives of the α emitters with proton number Z = 52–105 are systematically calculated. In the external environment, the decay energy and the interaction potential between α particle and daughter nucleus are both changed due to the electron screening effect and their variations are both very important for the electron screening effect. Besides, the electron screening effect is found to be closely related to the decay energy and its proton number.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    G. Gamow, Zur Quantentheorie des Atomkernes. Z. Phys. 51, 204–212 (1928). doi:10.1007/BF01343196

    Article  MATH  Google Scholar 

  2. 2.

    D.S. Delion, R.J. Liotta, Shell-model representation to describe α emission. Phys. Rev. C 87, 041302 (2013). doi:10.1103/PhysRevC.87.041302

    Article  Google Scholar 

  3. 3.

    B. Buck, A.C. Merchant, S.M. Perez, α decay calculations with a realistic potential. Phys. Rev. C 45, 2247 (1992). doi:10.1103/PhysRevC.45.2247

    Article  Google Scholar 

  4. 4.

    K. Varga, R.G. Lovas, R.J. Liotta, Absolute alpha decay width of \(^{212}\)Po in a combined shell and cluster model. Phys. Rev. Lett. 69, 37 (1992). doi:10.1103/PhysRevLett.69.37

    Article  Google Scholar 

  5. 5.

    G. Röpke, P. Schuck, Y. Funaki et al., Nuclear clusters bound to doubly magic nuclei: the case of \(^{212}\)Po. Phys. Rev. C 90, 034304 (2014). doi:10.1103/PhysRevC.90.034304

    Article  Google Scholar 

  6. 6.

    G. Royer, R.A. Gherghescu, On the formation and alpha decay of superheavy elements. Nucl. Phys. A 699, 479–492 (2002). doi:10.1016/S0375-9474(01)01296-9

    Article  Google Scholar 

  7. 7.

    D.N. Poenaru, M. Ivascu, A. Sandulescu, Alpha decay as a fission-like process. J. Phys. G: Nucl. Phys. 5, L169 (1979). doi:10.1088/0305-4616/5/10/005

    Article  Google Scholar 

  8. 8.

    S.A. Gurvitz, G. Kalbermann, Decay width and the shift of a quasistationary state. Phys. Rev. Lett. 59, 262 (1987). doi:10.1103/PhysRevLett.59.262

    Article  Google Scholar 

  9. 9.

    G.R. Satchler, W.G. Love, Folding model potentials from realistic interactions for heavy-ion scattering. Phys. Rep. 55, 183–254 (1979). doi:10.1016/0370-1573(79)90081-4

    Article  Google Scholar 

  10. 10.

    G. Bertsch, J. Borysowicz, H. McManus, W. Love, Interactions for inelastic scattering derived from realistic potentials. Nucl. Phys. A 284, 399–419 (1977). doi:10.1016/0375-9474(77)90392-X

    Article  Google Scholar 

  11. 11.

    Z. Ren, C. Xu, Z. Wang, New perspective on complex cluster radioactivity of heavy nuclei. Phys. Rev. C 70, 034304 (2004). doi:10.1103/PhysRevC.70.034304

    Article  Google Scholar 

  12. 12.

    C. Xu, Z. Ren, Systematical calculation of α decay half-lives by density-dependent cluster model. Nucl. Phys. A 753, 174–185 (2005). doi:10.1016/j.nuclphysa.2005.02.125

    Article  Google Scholar 

  13. 13.

    C. Xu, Z. Ren, New deformed model of α-decay half-lives with a microscopic potential. Phys. Rev. C 73, 041301 (2006). doi:10.1103/PhysRevC.73.041301

    Article  Google Scholar 

  14. 14.

    S. Flügge, Practical Quantum Mechanics, Vol. 177 (Springer, Berlin, 1994)

  15. 15.

    J. Schwinger, Thomas–Fermi model: the leading correction. Phys. Rev. A 22, 1827 (1980). doi:10.1103/PhysRevA.22.1827

    MathSciNet  Article  Google Scholar 

  16. 16.

    F.F. Karpeshin, Influence of electron screening on α decay. Phys. Rev. C 87, 054319 (2013). doi:10.1103/PhysRevC.87.054319

    Article  Google Scholar 

  17. 17.

    F.F. Karpeshin, M. B. Trzhaskovskaya, in Proceedings of the First International African Symposium on Exotic Nuclei (World Scientific, Singapore, 2014), pp. 201–205

  18. 18.

    A. Ya, Dzyublik, influence of electronic environment on α decay. Phys. Rev. C 90, 054619 (2014). doi:10.1103/PhysRevC.90.054619

    Article  Google Scholar 

  19. 19.

    Z. Patyk, H. Geissel, Y.A. Litvinov, A. Musumarra, C. Nociforo, α-decay half-lives for neutral atoms and bare nuclei. Phys. Rev. C 78, 054317 (2008). doi:10.1103/PhysRevC.78.054317

    Article  Google Scholar 

  20. 20.

    M. Fisichella et al., Determination of the half-life of \(^{213}\)Fr with high precision. Phys. Rev. C 88, 011303 (2013). doi:10.1103/PhysRevC.88.011303

    Article  Google Scholar 

  21. 21.

    N.T. Zinner, Alpha decay rate enhancement in metals: an unlikely scenario. Nucl. Phys. A 781, 81–87 (2007). doi:10.1016/j.nuclphysa.2006.10.071

    Article  Google Scholar 

  22. 22.

    H.B. Jeppesen, J. Byskov-Nielsen, P. Wright et al., Alpha-decay half-life of \(^{221}\)Fr in different environments. Eur. Phys. J. A 32, 31–34 (2007). doi:10.1140/epja/i2007-10011-9

    Article  Google Scholar 

  23. 23.

    T.E. Liolios, Atomic effects in astrophysical nuclear reactions. Phys. Rev. C 63, 045801 (2001). doi:10.1103/PhysRevC.63.045801

    Article  Google Scholar 

  24. 24.

    T.E. Liolios, Multielectron SEFs for nuclear reactions involved in advanced stages of stellar evolution. Nucl. Phys. A 693, 847–860 (2001). doi:10.1016/S0375-9474(01)00812-0

    Article  Google Scholar 

  25. 25.

    E.H. Lieb, J.P. Solovej, J. Yngvason, Heavy atoms in the strong magnetic field of a neutron star. Phys. Rev. Lett. 69, 749 (1992). doi:10.1103/PhysRevLett.69.749

    Article  Google Scholar 

  26. 26.

    D. Lai, Matter in strong magnetic fields. Rev. Mod. Phys. 73, 629 (2001). doi:10.1103/RevModPhys.73.629

    Article  Google Scholar 

  27. 27.

    T.E. Liolios, Screened α decay in dense astrophysical plasmas and superstrong magnetic fields. Phys. Rev. C 68, 015804 (2003). doi:10.1103/PhysRevC.68.015804

    Article  Google Scholar 

  28. 28.

    R.O. Mueller, A.R.P. Rau, L. Spruch, Statistical model of atoms in intense magnetic fields. Phys. Rev. Lett. 26, 1136 (1971). doi:10.1103/PhysRevLett.26.1136

    Article  Google Scholar 

  29. 29.

    B. Banerjee, D.H. Constantinescu, P. Rehak, Thomas–Fermi and Thomas–Fermi–Dirac calculations for atoms in a very strong magnetic field. Phys. Rev. D 10, 2384 (1974). doi:10.1103/PhysRevD.10.2384

    Article  Google Scholar 

  30. 30.

    B.B. Kadomtsev, Heavy Atom in an Ultrastrong Magnetic Field. Zh. Eksp. Teor. Fiz. 58, 1765 (1970) [English transl.: Sov. Phys. JETP 31, 945 (1970)]

  31. 31.

    N. Wan, C. Xu, Z.Z. Ren, Effects of electron screening on α-decay half-lives in different external environments. Phys. Rev. C 92, 024301 (2015). doi:10.1103/PhysRevC.92.024301

    Article  Google Scholar 

  32. 32.

    G.C. Rodrigues, P. Indelicato, J.P. Santos et al., Systematic calculation of total atomic energies of ground state configurations. At. Data Nucl. Data Tables 86, 117–233 (2004). doi:10.1016/j.adt.2003.11.005

    Article  Google Scholar 

  33. 33.

    A.H. Wapstra, G. Audi, C. Thibault, The AME2003 atomic mass evaluation: (I). Evaluation of input data, adjustment procedures. Nucl. Phys. A 729, 129–336 (2003). doi:10.1016/j.nuclphysa.2003.11.002

    Article  Google Scholar 

  34. 34.

    E.B. Baker, The application of the Fermi–Thomas statistical model to the calculation of potential distribution in positive ions. Phys. Rev. 36, 630 (1930). doi:10.1103/PhysRev.36.630

    Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Niu Wan.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11175085, 11235001, 11375086, and 11120101005), by the 973 Program of China (No. 2013CB834400), by the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and by the Open Project Program of the State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (No. Y5KF141CJ1).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wan, N., Xu, C. & Ren, ZZ. α-Decay half-life screened by electrons. NUCL SCI TECH 27, 149 (2016). https://doi.org/10.1007/s41365-016-0150-2

Download citation

Keywords

  • Electron screening effect
  • α-Decay half-life
  • Density-dependent cluster model