Skip to main content

An improved thermometer for intermediate-mass fragments

Abstract

An improved thermometer (T IB) is proposed for intermediate-mass fragments via the difference between isobaric yield ratios. The residual free energy of three isobars is replaced by that of the binding energy. The measured fragments in the 140A MeV 40, 48Ca + 9Be (181Ta) and 58, 64Ni + 9Be (181Ta) reactions are analyzed to obtain T IB ranging from 0.6 to 3.5 MeV. T IB is suggested to be a direct determination of temperature avoiding the fitting procedure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    S. Albergo et al., Temperature and free-nucleon densities of nuclear matter exploding into light clusters in heavy-ion collisions. Nuovo Cimento A 89, 1 (1985). doi:10.1007/BF02773614

    Article  Google Scholar 

  2. 2.

    H.F. Xi et al., Dynamical emission and isotope thermometry. Phys. Rev. C 58, R2636 (1998). doi:10.1103/PhysRevC.58.R2636

    Article  Google Scholar 

  3. 3.

    W. Trautmann, ALADIN Collaboration et al., Thermal and chemical freeze-out in spectator fragmentation. Phys. Rev. C 76, 064606 (2007). doi:10.1103/PhysRevC.76.064606

    Article  Google Scholar 

  4. 4.

    T. Odeh et al., Fragment kinetic energies and modes of fragment formation. Phys. Rev. Lett. 84, 4557 (2000). doi:10.1103/PhysRevLett.84.4557

    Article  Google Scholar 

  5. 5.

    C.W. Ma et al., Temperature of heavy fragments in heavy-ion collisions. Commun. Theor. Phys. 59, 95 (2013). http://iopscience.iop.org/0253-6102/59/1/17

  6. 6.

    H. Zheng, A. Bonasera, Density and temperature of fermions from quantum fluctuations. Phys. Lett. B 696, 178 (2011). doi:10.1016/j.physletb.2010.12.019

    Article  Google Scholar 

  7. 7.

    P. Zhou, W.D. Tian et al., Influence of statistical sequential decay on isoscaling and symmetry energy coefficient in a gemini simulation. Phys. Rev. C 84, 037605 (2011). doi:10.1103/PhysRevC.84.037605

    Article  Google Scholar 

  8. 8.

    S. Wuenschel et al., Measuring the temperature of hot nuclear fragments. Nucl. Phys. A 843, 1 (2010). doi:10.1016/j.nuclphysa.2010.04.013

    Article  Google Scholar 

  9. 9.

    V. Serfling et al., Temperatures of exploding nuclei. Phys. Rev. Lett. 80, 3928 (1998). doi:10.1103/PhysRevLett.80.3928

    Article  Google Scholar 

  10. 10.

    C.W. Ma et al., Temperature of intermediate mass fragments in simulated 40Ca + 40Ca reactions around the Fermi energies by AMD model. Nucl. Sci. Tech. 27, 111 (2016). doi:10.1007/s41365-016-0112-8

    Article  Google Scholar 

  11. 11.

    M. Huang et al., Isobaric yield ratios and the symmetry energy in heavy-ion reactions near the Fermi energy. Phys. Rev. C 81, 044620 (2010). doi:10.1103/PhysRevC.81.044620

    Article  Google Scholar 

  12. 12.

    C.W. Ma, J. Pu, Y.G. Ma, S.S. Wang et al., Temperature determined by isobaric yield ratios in heavy-ion collisions. Phys. Rev. C 86, 054611 (2012). doi:10.1103/PhysRevC.86.054611

    Article  Google Scholar 

  13. 13.

    C.W. Ma et al., Temperature determined by isobaric yield ratios in a grand-canonical ensemble theory. Phys. Rev. C 88, 014609 (2013). doi:10.1103/PhysRevC.88.014609

    Article  Google Scholar 

  14. 14.

    M.B. Tsang et al., Fragmentation cross sections and binding energies of neutron-rich nuclei. Phys. Rev. C 76, 041302(R) (2007). doi:10.1103/PhysRevC.76.041302

    Article  Google Scholar 

  15. 15.

    S.J. Lee, A.Z. Mekjian, Symmetry and surface symmetry energies in finite nuclei. Phys. Rev. C 82, 064319 (2010). doi:10.1103/PhysRevC.82.064319

    Article  Google Scholar 

  16. 16.

    C.W. Ma, F. Wang, Y.G. Ma et al., Isobaric yield ratios in heavy-ion reactions, and symmetry energy of neutron-rich nuclei at intermediate energies. Phys. Rev. C 83, 064620 (2011). doi:10.1103/PhysRevC.83.064620

    Article  Google Scholar 

  17. 17.

    C.W. Ma et al., Symmetry energy extracted from fragments in relativistic energy heavy-ion collisions induced by 124,136Xe. Eur. Phys. J. A 48, 78 (2012). doi:10.1140/epja/i2012-12078-5

    Article  Google Scholar 

  18. 18.

    C.W. Ma et al., The symmetry energy from the neutron-rich nucleus produced in the intermediate-energy 40,48Ca and 58,64Ni projectile fragmentation. Chin. Phys. Lett. 29, 062101 (2012). doi:10.1088/0256-307X/29/6/062101

    Article  Google Scholar 

  19. 19.

    C.W. Ma, H.L. Wei et al., Neutron-skin effects in isobaric yield ratios for mirror nuclei in a statistical abrasion-ablation model. Phys. Rev. C 88, 044612 (2013). doi:10.1103/PhysRevC.88.044612

    Article  Google Scholar 

  20. 20.

    C.W. Ma, S.S. Wang, Y.L. Zhang et al., Isobaric yield ratio difference in heavy-ion collisions, and comparison to isoscaling. Phys. Rev. C 87, 034618 (2013). doi:10.1103/PhysRevC.87.034618

    Article  Google Scholar 

  21. 21.

    C.W. Ma, S.S. Wang, Y.L. Zhang et al., Chemical properties of colliding sources in 124, 136Xe and 112, 124Sn induced collisions in isobaric yield ratio difference and isoscaling methods. J. Phys. G Nucl. Part. Phys. 40, 125106 (2013). doi:10.1088/0954-3899/40/12/125106

    Article  Google Scholar 

  22. 22.

    C.W. Ma, J. Yu, X.M. Bai et al., Isobaric yield ratio difference and neutron density difference in calcium isotopes. Phys. Rev. C 89, 057602 (2014). doi:10.1103/PhysRevC.89.057602

    Article  Google Scholar 

  23. 23.

    C.W. Ma, X.M. Bai, J. Yu et al., Neutron density distributions of neutron-rich nuclei studied with the isobaric yield ratio difference. Eur. Phys. J. A 50, 139 (2014). doi:10.1140/epja/i2014-14139-1

    Article  Google Scholar 

  24. 24.

    C.W. Ma, Y.-L. Zhang, C.-Y. Qiao et al., Target effects in isobaric yield ratio differences between projectile fragmentation reactions. Phys. Rev. C 91, 014615 (2015). doi:10.1103/PhysRevC.91.014615

    Article  Google Scholar 

  25. 25.

    C.Y. Qiao et al., Isobaric yield ratio difference between the 140A MeV 58Ni + 9Be and 64Ni + 9 Be reactions studied by the antisymmetric molecular dynamics model. Phys. Rev. C 92, 014612 (2015). doi:10.1103/PhysRevC.92.014612

    Article  Google Scholar 

  26. 26.

    M. Wang et al., The Ame 2012 atomic mass evaluation. Chin. Phys. C 36, 1603 (2012). doi:10.1088/1674-1137/36/12/003

    Article  Google Scholar 

  27. 27.

    M. Mocko et al., Projectile fragmentation of 40Ca, 48Ca, 58Ni, and 64Ni at 140 MeV/nucleon. Phys. Rev. C 74, 054612 (2006). doi:10.1103/PhysRevC.74.054612

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chun-Wang Ma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, TT., Ma, CW. An improved thermometer for intermediate-mass fragments. NUCL SCI TECH 27, 132 (2016). https://doi.org/10.1007/s41365-016-0142-2

Download citation

Keywords

  • Temperature
  • Intermediate-mass fragment
  • Isobaric ratio