Skip to main content

Readout electronics of a prototype spectrometer for measuring low-energy ions in solar wind plasma


Readout electronics is developed for a prototype spectrometer for in situ measurement of low-energy ions of 30 eV/e–20 keV/e in the solar wind plasma. A low-noise preamplifier/discriminator (A111F) is employed for each channel to process the signal from micro-channel plate (MCP) detectors. A high-voltage (HV) supply solution based on a HV module and a HV optocoupler is adopted to generate a fast sweeping HV and a fixed HV. Due to limitation of telemetry bandwidth in space communication, an algorithm is implemented in an FPGA (field programmable gate array) to compress the raw data. Test results show that the electronics achieves a 1 MHz event rate and a large input dynamic range of 95 pC. A slew rate of 0.8 V/μs and an integral nonlinearity of 0.7-LSB for the sweeping HV, and a precision of less than 0.8 % for the fixed HV are obtained. A vacuum beam test shows an energy resolution of 12 ± 0.7 % full width at half maximum (FWHM) is achieved, and noise counts are less than 10/sec, indicating that the performance meets the physical requirement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    A.J. Hundhausen, Coronal expansion and solar wind (Springer Science & Business Media, Berlin, 2012), pp. 109–111

    Google Scholar 

  2. 2.

    S.I. Akasofu, A historical review of the geomagnetic storm-producing plasma flows from the Sun. Space Sci. Rev. 164, 85–132 (2011). doi:10.1007/s11214-011-9856-y

    Article  Google Scholar 

  3. 3.

    R.P. Lin, K.A. Anderson, S. Ashford et al., A three-dimensional plasma and energetic particle investigation for the wind spacecraft. Space Sci. Rev. 71, 125–153 (1995). doi:10.1007/BF00751328

    Article  Google Scholar 

  4. 4.

    A.B. Galvin, L.M. Kistler, M.A. Popecki et al., The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev. 136, 437–486 (2008). doi:10.1007/s11214-007-9296-x

    Article  Google Scholar 

  5. 5.

    S. McKenna-Lawlor, J. Balaz, I. Strharsky et al., The energetic NeUtral atom detector unit (NUADU) for China’s double star mission and its calibration. Nucl Instrum Methods A 530, 311–322 (2004). doi:10.1016/j.nima.2004.04.244

    Article  Google Scholar 

  6. 6.

    J. Balá, I. Strharsky, Programmable energetic particle spectrometer MEP 2 for space project spectrum—RADIOASTRON. Report number, UEF-01-11. doi: 10.13140/RG.2.1.2207.6000 (2015)

  7. 7.

    D.T. Young, B.L. Barraclough, J.J. Berthelier et al., Cassini plasma spectrometer investigation. Space Sci. Rev. (2004). doi:10.1007/s11214-004-1406-4

    Google Scholar 

  8. 8.

    H. Reme, C. Aoustin, J.M. Bosqued et al., First multispacecraft ion measurements in and near the earth’s magnetosphere with the identical cluster ion spectrometry(CIS) experiment. Ann. Geophys. 19, 1303–1354 (2001). doi:10.5194/angeo-19-1303-2001

    Article  Google Scholar 

  9. 9.

    A. Rhouni, J.D. Techer, G. Sou et al., A high dynamic range and low power 16-channel CMOS circuit for particle detection in space plasmas. IEEE IMTC P (2012). doi:10.1109/I2MTC.2012.6229513

    Google Scholar 

  10. 10.

    V.B. Cajipe, J.H. Clemmons, M. Clajus et al., in Multi-channel charge amplifier-discriminator-counter IC for the space sciences. IEEE nuclear science symposium conference record, vol. 3, 1605–1608 (2006). doi: 10.1109/NSSMIC.2006.354204

  11. 11.

    S.S. Gao, C.Q. Feng, D. Jiang et al., Radiation tolerance studies on the VA32 ASIC for DAMPE BGO calorimeter. Nucl. Sci. Tech. 25, 010402 (2014). doi:10.13538/j.1001-8042/nst.25.010402

    Google Scholar 

  12. 12.

    A111F hybrid charge sensitive preamplifier, discriminator, and pulse shaper. Amptek Inc., USA.

  13. 13.

    D. Yang, Z. Cao, X. Qin, et al., Design of the high voltage supply module of a prototype energy spectrometer for solar wind plasma measurement. The 34th international cosmic ray conference (Hague, Netherlands), p. 6 (2015)

  14. 14.

    N.D. Beser, Space data compression standards. Johns Hopkins APL Techn Dig 15, 206–223 (1994)

    Google Scholar 

  15. 15.

    M. Iliev, C.W. McCluskey, D. Henzlova, et al., Study of the front end electronics contribution to the dead time in He3 proportional counters. Proceedings of the 52nd annual institute of nuclear materials management meeting, California, (2011), p. 17–21

  16. 16.

    Hamamatsu MCP, MCP assembly.

  17. 17.

    R.H. Maurer, M.E. Fraeman, M.N. Martin et al., RHarsh environments: space radiation environment, effects, and mitigation. Johns Hopkins APL Tech Dig 28(1), 17 (2008)

    Google Scholar 

  18. 18.

    P. Adell, G. Allen, Assessing and mitigating radiation effects in Xilinx FPGAs (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 2008)

    Book  Google Scholar 

  19. 19.

    J.J. Wang, Radiation effects in FPGAs. Proceedings of the 9th workshop on electronics for LHC experiments, Amsterdam, Netherlands (2003)

Download references


The authors are grateful for the support of collaboration team from CAS Key Laboratory of Geospace Environment (USTC).

Author information



Corresponding author

Correspondence to Chang-Qing Feng.

Additional information

This work was supported by the National Key Scientific Instrument and Equipment Development Projects of the National Natural Science Foundation of China (No. 41327802) and the Fundamental Research Funds for the Central Universities (WK2030040066).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Cao, Z., Qin, X. et al. Readout electronics of a prototype spectrometer for measuring low-energy ions in solar wind plasma. NUCL SCI TECH 27, 135 (2016).

Download citation


  • Solar wind plasma
  • Energy spectrometer
  • Readout electronics
  • A111F
  • Data compression