Skip to main content

Nuclear alternating parity bands and transition rates in a model of coherent quadrupole–octupole motion in neutron-rich barium isotopes

Abstract

Deformed even–even nuclei Barium isotopes with quadrupole–octupole deformations are investigated on the basis of a collective model. The model describes energy levels of the yrast band with alternating parity in the neutron-rich \(^{140,142,144,146,148}\)Ba. The structure of the alternating parity bands is examined by odd–even \((\Delta I =1)\) staggering diagrams. An analytical method of the collective model is proposed for the calculation of E2 transition probabilities in alternating spectra of the nuclei \({}^{140,142,144,146}\)Ba.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    P.A. Butler, W. Nazarewicz, Intrinsic reflection asymmetry in atomic nuclei. Rev. Mod. Phys. 68, 349–421 (1996). doi:10.1103/RevModPhys.68.349

    Article  Google Scholar 

  2. 2.

    R.V. Jolos, P. von Brentano, Angular momentum dependence of the parity splitting in nuclei with octupole correlations. Phys. Rev. C 49, R2301 (1994). doi:10.1103/PhysRevC.49.R2301

    Article  Google Scholar 

  3. 3.

    H.J. Krappe, U. Wille, Collective model for pear-shaped nuclei. Nucl. Phys. A 124, 641–654 (1969). doi:10.1016/0375-9474(69)90656-3

    Article  Google Scholar 

  4. 4.

    VYu. Denisov, A. Ya, Dzyublik. Collective states of even-even and odd nuclei with \(\beta _{2}, \beta _{4}, \ldots, \beta _{N}\) deformations. Nucl. Phys. A 589, 17–57 (1995). doi:10.1016/0375-9474(95)00075-C

    Article  Google Scholar 

  5. 5.

    N. Minkov, P. Yotov, S. Drenska et al., Nuclear collective motion with a coherent coupling interaction between quadrupole and octupole modes. Phys. Rev. C 73, 044315 (2006). doi:10.1103/PhysRevC.73.044315

    Article  Google Scholar 

  6. 6.

    P.G. Bizzeti, A.M. Bizzeti-Sona, Description of nuclear octupole and quadrupole deformation close to the axial symmetry and phase transitions in the octupole mode. Phys. Rev. C 70, 064319 (2004). doi:10.1103/PhysRevC.70.064319

    Article  Google Scholar 

  7. 7.

    P.G. Bizzeti, A.M. Bizzeti-Sona, Description of nuclear octupole and quadrupole deformation close to axial symmetry: critical-point behavior of \({}^{224}\)Ra and \({}^{224}\)Th. Phys. Rev. C 77, 024320 (2008). doi:10.1103/PhysRevC.77.024320

    Article  Google Scholar 

  8. 8.

    P.G. Bizzeti, A.M. Bizzeti-Sona, Description of nuclear octupole and quadrupole deformation close to axial symmetry: octupole vibrations in the X(5) nuclei \({}^{150}\)Nd and \({}^{152}\)Sm. Phys. Rev. C 81, 024320 (2010). doi:10.1103/PhysRevC.81.034320

    Article  Google Scholar 

  9. 9.

    W.R. Phillips, I. Ahmad, H. Emling et al., Octupole deformation in neutron-rich barium isotopes. Phys. Rev. Lett. 57, 3257 (1986). doi:10.1103/PhysRevLett.57.3257

    Article  Google Scholar 

  10. 10.

    H. Mach, W. Nazarewicz, D. Kusnezov et al., Influence of shell effects and stable octupole deformation on the E1 and E2 transition rates in the heavy-Ba region. Phys. Rev. C 41, R2469(R) (1990). doi:10.1103/PhysRevC.41.R2469

    Article  Google Scholar 

  11. 11.

    S. Cwiok, W. Nazarewicz, Ground-state shapes and spectroscopic properties of \(\text{ Z }\sim 58, \text{ N }\sim 88\) nuclei. Nucl. Phys. A 496, 367–384 (1989). doi:10.1016/0375-9474(89)90180-2

    Article  Google Scholar 

  12. 12.

    A. Sobiczewski, Z. Patyk, S. Cwiok et al., Study of the potential energy of “octupole”-deformed nuclei in a multidimensional deformation space. Nucl. Phys. A 485, 16–30 (1988). doi:10.1016/0375-9474(88)90519-2

    Article  Google Scholar 

  13. 13.

    D. Kusnezov, F. Iachello, A study of collective octupole states in barium in the interacting boson model. Phys. Lett. B 209, 420–424 (1988). doi:10.1016/0370-2693(88)91166-5

    Article  Google Scholar 

  14. 14.

    N. Minkov, A model approach to quadrupole–octupole deformations in atomic nuclei. Rom. J. Phys 58, 1130–1140 (2013). doi:10.1016/RomJournPhys.58.1130-1140

    Google Scholar 

  15. 15.

    P.M. Davidson, Eigenfunctions for calculating electronic vibrational intensities. Proc. R. Soc. Lond. A 135, 459–472 (1932). doi:10.1098/rspa.1932.0045

    Article  MATH  Google Scholar 

  16. 16.

    D.J. Rowe, C. Bahri, Rotation-vibrational spectra of diatomic molecules and nuclei with Davidson interactions. J. Phys. A Math. Gen. 31, 4947 (1998). doi:10.1088/0305-4470/31/21/011

    Article  MATH  Google Scholar 

  17. 17.

    N. Minkov, S. Drenska, M. Strecker et al., Non-yrast nuclear spectra in a model of coherent quadrupole–octupole motion. Phys. Rev. C 85, 034306 (2012). doi:10.1103/PhysRevC.85.034306

    Article  Google Scholar 

  18. 18.

    D. Bonatsos, C. Daskaloyannis, S.B. Drenska et al., ΔI = I staggering in octupole bands of light actinides: “beat” patterns. Phys. Rev. C 62, 024301 (2000). doi:10.1103/PhysRevC.62.024301

    Article  Google Scholar 

  19. 19.

    N. Minkov, S.B. Drenska, P.P. Raychev et al., “Beat” patterns for the odd-even staggering in octupole bands from a quadrupole–octupole Hamiltonian. Phys. Rev. C 63, 044305 (2001). doi:10.1103/PhysRevC.63.044305

    Article  Google Scholar 

  20. 20.

    N. Minkov, P. Yotov, S. Drenska et al., Parity shift and beat staggering structure of octupole bands in a collective model for quadrupole-octupole-deformed nuclei. J. Phys. G Nucl. Part Phys. 32, 497–509 (2006). doi:10.1088/0954-3899/32/4/008

    Article  Google Scholar 

  21. 21.

    N. Minkov, S. Drenska, P. Yotov et al., Coherent quadrupole–octupole modes and split parity-doublet spectra in odd-A nuclei. Phys. Rev. C 76, 034324 (2007). doi:10.1103/PhysRevC.76.034324

    Article  Google Scholar 

  22. 22.

    http://www.nndc.bnl.gov/ensdf/, December (2015)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jia-Xing Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11075133, U1332126, 10205019).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Peng, Y., Zhou, CB. et al. Nuclear alternating parity bands and transition rates in a model of coherent quadrupole–octupole motion in neutron-rich barium isotopes. NUCL SCI TECH 27, 129 (2016). https://doi.org/10.1007/s41365-016-0128-0

Download citation

Keywords

  • Collective Hamiltonian
  • Quadrupole–octupole deformations
  • Staggering effect
  • Electric transition probability