Skip to main content

A Mössbauer investigation of nano-NiFe alloy/expanded graphite for electromagnetic shielding


A new material is prepared by impregnating the expanded graphite (EG) into ethanol solutions of metal acetate and then drying and reducing it in \(\hbox {H}_2\). It contains the EG and the nanoparticles of the magnetic Ni–Fe alloy for the electromagnetic shielding. Its morphology, phase structure, magnetic properties, and electromagnetic shielding effectiveness (SE) are investigated in our experiment. It shows that the morphology, the phase structure, and the magnetic property of the composite can be modified by altering the Ni content in the alloy nanoparticles. Interestingly, the SE can be enhanced to 54–70 dB at low frequencies (300 kHz–10 MHz) by dispersing the magnetic nanoparticles onto EG.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    M. Xiong, Y. Gao, J. Liu, Fabrication of magnetic nano liquid metal fluid through loading of Ni nanoparticles into gallium or its alloy. J. Magn. Magn. Mater. 354, 279–283 (2014). doi:10.1016/j.jmmm.2013.11.028

    Article  Google Scholar 

  2. 2.

    S. Panday, B.S.S. Daniel, P. Jeevanandam, Synthesis of nanocrystalline CoCNi alloys by precursor approach and studies on their magnetic properties. J. Magn. Magn. Mater. 323, 2271–2280 (2011). doi:10.1016/j.jmmm.2011.04.006

    Article  Google Scholar 

  3. 3.

    S. de Llobet, J.L. Pinilla, R. Moliner et al., Effect of the synthesis conditions of Ni/Al2O3 catalysts on the biogas decomposition to produce H2-rich gas and carbon nanofibers. Appl. Catal. B Environ. 165, 457–465 (2015). doi:10.1016/j.apcatb.2014.10.014

    Article  Google Scholar 

  4. 4.

    S.H. Chang, B.Y. Chen, Y.C. Lin, Toxicity assessment of three-component Fe–Cr–Ni biomedical materials using an augmented simplex design. Mater. Sci. Eng. C 32, 1893–1896 (2012). doi:10.1016/j.msec.2012.05.008

    Article  Google Scholar 

  5. 5.

    X. Yu, Z. Shen, The electromagnetic shielding of Ni films deposited on cenosphere particles by magnetron sputtering method. J. Magn. Magn. Mater. 321, 2890–2895 (2009). doi:10.1016/j.jmmm.2009.04.040

    Article  Google Scholar 

  6. 6.

    G. Shi, W. Li, Y. Lu, Fe-based surface activator for electroless nickel deposition on polyester: application to electromagnetic shielding. Surf. Coat. Technol. 253, 221–226 (2014). doi:10.1016/j.surfcoat.2014.05.040

    Article  Google Scholar 

  7. 7.

    S.R. Dhakate, S. Sharma, M. Borah et al., Expanded graphite-based electrically conductive composites as bipolar plate for PEM fuel cell. Int. J. Hydrogen Energy 33, 7146–7152 (2008). doi:10.1016/j.ijhydene.2008.09.004

    Article  Google Scholar 

  8. 8.

    X. Luo, D.D.L. Chung, Electromagnetic interference shielding reaching 130 dB using flexible graphite. Carbon 34, 1293–1294 (1996). doi:10.1016/0008-6223(96)82798-9

    Article  Google Scholar 

  9. 9.

    Y. Huang, Z. Xu, J. Shen et al., Dispersion of magnetic metals on expanded graphite for the shielding of electromagnetic radiations. Appl. Phys. Lett. 90, 133117 (2007). doi:10.1063/1.2718269

    Article  Google Scholar 

  10. 10.

    Z. Xu, Y. Huang, Y. Yang et al., Dispersion of iron nano-particles on expanded graphite for the shielding of electromagnetic radiation. J. Magn. Magn. Mater. 322, 3084–3087 (2010). doi:10.1016/j.jmmm.2010.05.034

    Article  Google Scholar 

  11. 11.

    X. Yu, Z. Shen, C. Cai, Millimeter wave electromagnetic interference shielding by coating expanded polystyrene particles with a copper film using magnetron sputtering. Vacuum 83, 1438–1441 (2009). doi:10.1016/j.vacuum.2009.05.021

    Article  Google Scholar 

  12. 12.

    M. Mishra, A.P. Singh, S.K. Dhawan, Expanded graphite–nanoferrite–fly ash composites for shielding of electromagnetic pollution. J. Alloy. Compd. 557, 244–251 (2013). doi:10.1016/j.jallcom.2013.01.004

    Article  Google Scholar 

  13. 13.

    X. Luo, R. Chugh, B.C. Biller et al., Electronic applications of flexible graphite. J. Electron. Mater. 31(5), 535–544 (2002). doi:10.1007/s11664-002-0111-x

    Article  Google Scholar 

  14. 14.

    ASTM Standard D4935-10, in Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials

  15. 15.

    C. Jin, X.Y. Fan, Y. Li et al., Multi-technique characterizations of main elements in the vehicle exhaust particles collected in a tunnel in Shnaghai. Nucl. Sci. Tech. 22, 205–211 (2011)

    Google Scholar 

  16. 16.

    W. Liu, J. Yang, Y.A. Huang et al., The Mössbauer investigation in iron nitride/expanded graphite. Nucl. Tech. 36, 010501 (2013). (in Chinese)

    Google Scholar 

  17. 17.

    Y.V. Baldokhin, V.V. Tcherdyntsev, S.D. Kaloshkin et al., Transformations and fine magnetic structure of mechanically alloyed Fe–Ni alloys. J. Magn. Magn. Mater. 203, 313–315 (1999). doi:10.1016/S0304-8853(99)00213-9

    Article  Google Scholar 

  18. 18.

    L.Y. Pustov, V.V. Tcherdyntsev, S.D. Kaloshkin et al., Face-centered cubic phase stability and martensitic transformation under deformation in Fe–Ni and Fe–Mn alloys nanostructured by mechanical alloying and high-pressure torsion. Mater. Sci. Eng. A 481–482, 732–736 (2008). doi:10.1016/j.msea.2006.12.203

    Article  Google Scholar 

  19. 19.

    D.G. Rancount, R.B. Scorzelli, Low-spin \(\gamma \)-Fe–Ni(\(\gamma _{LS}\)) proposed as a new mineral in Fe–Ni-bearing meteorites: epitaxial intergrowth of \(\gamma _{LS}\) and tetrataenite as a possible equilibrium state at 20–40 at% Ni. J. Magn. Magn. Mater. 150, 30–36 (1995). doi:10.1016/0304-8853(95)00089-5

    Article  Google Scholar 

  20. 20.

    E.D. Santos, J. Gattacceca, P. Rochette et al., Magnetic hysteresis properties and 57Fe Mössbauer spectroscopy of iron and stony-iron meteorites: implications for mineralogy and thermal history. Phys. Earth Planet. Inter. 242, 50–64 (2015). doi:10.1016/j.pepi.2015.01.004

    Article  Google Scholar 

  21. 21.

    B. Liu, R. Huang, J. Wang et al., Mössbauer investigation of Fe–Ni fine particles. J. Appl. Phys. 85, 1010–1013 (1999). doi:10.1063/1.369222

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Run-Sheng Huang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 50977042 and 10904061), the “863” program of MSTC (No. 2006AA03Z458) and the research funds for Nanjing Institute of Technology (No. YKJ201002).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Huang, YA., Wei, L. et al. A Mössbauer investigation of nano-NiFe alloy/expanded graphite for electromagnetic shielding. NUCL SCI TECH 27, 127 (2016).

Download citation


  • Expanded graphite
  • Nano-NiFe alloy
  • Electromagnetic shielding
  • Mössbauer spectra