Skip to main content

ALD-coated ultrathin Al2O3 film on BiVO4 nanoparticles for efficient PEC water splitting


Bismuth vanadate (BiVO4) is a promising semiconductor material for solar energy conversion via photoelectrochemical (PEC) water splitting, whereas its performance is limited by surface recombination due to trapping states. Herein, we developed a new method to passivate the trapping states on BiVO4 surface using ultrathin aluminum oxide (Al2O3) overlayer by atomic layer deposition. The coated ultrathin Al2O3 film on BiVO4 significantly enhanced photocurrent densities of the BiVO4 anodes under standard illumination of AM 1.5 G (100 mW/cm2). The electrochemical impedances and photoluminescence spectra were studied to confirm that the improved PEC water splitting performance of BiVO4 was due to the decreased surface recombination state on BiVO4, which effectively enhanced the charge separation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). doi:10.1038/238037a0

    Article  Google Scholar 

  2. 2.

    M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001). doi:10.1038/35104607

    Article  Google Scholar 

  3. 3.

    Y. Park, K.J. McDonald et al., Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42(6), 2321–2337 (2013). doi:10.1039/C2CS35260E

    Article  Google Scholar 

  4. 4.

    A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121(49), 11459–11467 (1999). doi:10.1021/ja992541y

    Article  Google Scholar 

  5. 5.

    J.A. Seabold, K.S. Choi, Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 134(4), 2186–2192 (2012). doi:10.1021/ja209001d

    Article  Google Scholar 

  6. 6.

    T.W. Kim, Y. Ping, G.A. Galli et al., Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nat. Commun. 6, 8769 (2015). doi:10.1038/ncomms9769

    Article  Google Scholar 

  7. 7.

    M. Zhou, J. Bao, W.T. Bi et al., Efficient water splitting via a heteroepitaxial BiVO4 photoelectrode decorated with Co–Pi catalysts. Chem. Sus. Chem. 5(8), 1420–1425 (2012). doi:10.1002/cssc.201200287

    Article  Google Scholar 

  8. 8.

    X.X. Chang, T. Wang, P. Zhang et al., Enhanced surface reaction kinetics and charge separation of p–n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 137(26), 8356–8359 (2015). doi:10.1021/jacs.5b04186

    Article  Google Scholar 

  9. 9.

    T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174), 990–994 (2014). doi:10.1126/science.1246913

    Article  Google Scholar 

  10. 10.

    R. Saito, Y. Miseki, K. Sayama, Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Chem. Commun. 48(32), 3833–3835 (2012). doi:10.1039/C2CC30713H

    Article  Google Scholar 

  11. 11.

    X.J. Shi, I.Y. Choi, K. Zhang et al., Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat. Commun. 5, 4775 (2014). doi:10.1038/ncomms5775

    Article  Google Scholar 

  12. 12.

    L.W. Zhang, E. Reisner, J.J. Baumberg, Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar water oxidation. Energy Environ. Sci. 7(4), 1402–1408 (2014). doi:10.1039/C3EE44031A

    Article  Google Scholar 

  13. 13.

    R. Liu, J. Spurgeon, X.G. Yang, Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 7, 2504–2517 (2014). doi:10.1039/C4EE00450G

    Article  Google Scholar 

  14. 14.

    F.L. Formal, N. Tétreault, M. Cornuz et al., Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2, 737–743 (2011). doi:10.1039/c0sc00578a

    Article  Google Scholar 

  15. 15.

    X.G. Yang, R. Liu, C. Du et al., Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition. ACS Appl. Mater. Interfaces 6(15), 12005–12022 (2014). doi:10.1021/am500948

    Article  Google Scholar 

  16. 16.

    P. Wang, D. Wang, C. Peng, C. Fan, TiO2 nanorod arrays of a high photo-to-hydrogen efficiency for photoelectrochemical water decomposition. Nucl. Tech. 35, 472–476 (2012). doi:10.11889/j.0253-3219.2012.hjs.35.472

    Google Scholar 

  17. 17.

    Y. Zhang, T. Tian, Y. Sun, Y. Zhu, Q. Huang, The biocatalytic activity of inorganic nanomaterials. Chin. Sci. Bull. 59, 158–168 (2014). doi:10.1360/972013-311

    Article  Google Scholar 

  18. 18.

    M. Liu, K. Wang, N. Chen, L. Wang, Radiotherapy enhancement with gold nanoparticles. Nucl. Tech. 38, 090501–090506 (2015). doi:10.11889/j.0253-3219.2015.hjs.38.090501. (in Chinese)

    MathSciNet  Google Scholar 

  19. 19.

    D. Zhu, X. Zuo, C. Fan, Fabrication of nanometer-sized gold flower microelectrodes for electrochemical biosensing applications. Sci. Sin. Chim. 45, 1214–1219 (2015). doi:10.1360/N032015-00039

    Article  Google Scholar 

  20. 20.

    M. Zhong, T. Hisatom, Y.B. Kuang et al., Surface modification of CoO x loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 137(15), 5053–5060 (2015). doi:10.1021/jacs.5b00256

    Article  Google Scholar 

  21. 21.

    M.F. Lichterman, M.R. Shaner, S.G. Handler et al., Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition. J. Phys. Chem. Lett. 4(23), 4188–4191 (2013). doi:10.1021/jz4022415

    Article  Google Scholar 

  22. 22.

    K. Hirota, G. Komatsu, M. Yamashita et al., Formation, characterization and sintering of alkoxy-derived bismuth vanadate. Mater. Res. Bull. 27(7), 823–830 (1992). doi:10.1016/0025-5408(92)90177-2

    Article  Google Scholar 

  23. 23.

    M.C. Long, W.M. Cai, J. Cai et al., Correlation of electronic structures and crystal structures with photocatalytic properties of undoped, N-doped and I-doped TiO2. Chem. Phys. Lett. 40(1–3), 71–76 (2006). doi:10.1016/j.cplett.2005.12.036

    Article  Google Scholar 

  24. 24.

    D.K. Ma, M.L. Guan, S.S. Liu et al., Controlled synthesis of olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity. Dalton Trans. 41(18), 5581–5586 (2012). doi:10.1039/C2DT30099K

    Article  Google Scholar 

  25. 25.

    J. Wielant, V. Goossens, R. Hausbrand et al., Electronic properties of thermally formed thin iron oxide films. Electrochim. Acta 52(27), 7617–7625 (2007). doi:10.1016/j.electacta.2006.12.041

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Kun Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (21473236, 21227804), the Shanghai Municipal Commission for Science and Technology (13NM1402300) and the Chinese Academy of Sciences. Ali Aldalbahi acknowledges the support by the Deanship of Scientific Research, College of Science Research Center at King Saud University.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, GL., Wang, DG., Zhang, YY. et al. ALD-coated ultrathin Al2O3 film on BiVO4 nanoparticles for efficient PEC water splitting. NUCL SCI TECH 27, 108 (2016).

Download citation


  • Ultrathin Al2O3 overlayer
  • Photoelectrochemical water splitting
  • Surface state
  • Atomic layer deposition