Skip to main content

Preliminary physics study of the Lead–Bismuth Eutectic spallation target for China Initiative Accelerator-Driven System


The Lead–Bismuth Eutectic (LBE) spallation target has been considered as one of the two alternatives for the spallation target for China Initiative Accelerator-Driven System. This paper reports the preliminary study on physical feasibility of a U-type LBE target with window. The simulation results based on Monte Carlo transport code MCNPX indicate that the spallation neutron yield is about 2.5 per proton. The maximum spallation neutron flux is observed at about 3 cm below the lowest part of the window. When the LBE target is coupled with the reactor, the reactor neutrons from the fission reaction increased the neutron field significantly. The energy deposition of high-energy protons is the main heat source; the spallation neutrons and reactor neutrons contribute only a small fraction. The maximum energy deposition in the LBE is about 590 W/cm3 and that in the target window is about 319 W/cm3. To estimate the lifetime of the target window, we have calculated the radiation damages. The maximum displacement production rate in the target window is about 10 dpa/FPY. The hydrogen and helium production rates generated during normal operation were also evaluated. By analyzing the residual nucleus in the target during the steady operation, we estimated the accumulated quantities of the extreme radioactivity toxicant 210Po in the LBE target loop. The results would be helpful for the evaluation of the target behavior and will be beneficial to the optimization of the target design work of the experimental facilities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    C.D. Bowman, E.D. Arthur, P.W. Lisowski et al., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source. Nucl. Instrum. Methods A 320, 336–367 (1992). doi:10.1016/0168-9002(92)90795-6

    Article  Google Scholar 

  2. 2.

    Z. Wenlong, X. Hushan, Advanced fission energy program-ADS transmutation system. Bull. Chin. Acad. Sci. 27(3), 375–381 (2012). doi:10.3969/j.issn.1000-3045.2012.03.017

    Google Scholar 

  3. 3.

    H.A. Abderrahim, J. Galambos, Y. Gohar et al., Accelerator and target technology for accelerator driven transmutation and energy production. DOE white paper on ADS, vol. 1, no. 1 (2010), pp. 1–23.

  4. 4.

    T. Sugawara, K. Nishihara, H. Obayashi et al., Conceptual design study of beam window for accelerator-driven system. J. Nucl. Sci. Technol. 47(10), 953–962 (2010). doi:10.1080/18811248.2010.9720974

    Article  Google Scholar 

  5. 5.

    C. Fazio, F. Gröschel, W. Wagner et al., The MEGAPIE-TEST project: supporting research and lessons learned in first-of-a-kind spallation target technology. Nucl. Eng. Des. 238(6), 1471–1495 (2008). doi:10.1016/j.nucengdes.2007.11.006

    Article  Google Scholar 

  6. 6.

    A. Batta, A. Class, Numerical investigations on geometrical designs of the windowless XT-ADS spallation target, in International Congress on Advances in Nuclear Power Plants (ICAPP07), Nice, France, May. 13–18, 2007

  7. 7.

    J.B. Vogt, A. Verleene, I. Serre et al., Understanding the liquid metal assisted damage sources in the T91 martensitic steel for safer use of ADS. Eng. Fail. Anal. 14(6), 1185–1193 (2007). doi:10.1016/j.engfailanal.2006.11.075

    Article  Google Scholar 

  8. 8.

    W. Yican, Y. Bai, Y. Song, Q. Huang, Z. Zhao, H. Liqin, Development strategy and conceptual design of China lead-based research reactor. Ann. Nucl. Energy 87, 511–516 (2016). doi:10.1016/j.anucene.2015.08.015

    Article  Google Scholar 

  9. 9.

    D. Pelowitz, MCNPX User’s Manual 2.7.0 (Los Alamos National Laboratory, Los Alamos, 2011)

    Google Scholar 

  10. 10.

    S.G. Mashnik, A.J. Sierk, K.K. Gudima et al., CEM03 and LAQGSM03—new modeling tools for nuclear applications. J. Phys: Conf. Ser. 41(1), 340 (2006). doi:10.1088/1742-6596/41/1/037

    Google Scholar 

  11. 11.

    L. Chen, F. Ma, X.Y. Zhang et al., Spallation yield of neutrons produced in thick lead target bombarded with 250 MeV protons. Nucl. Instrum. Methods B 342, 87–90 (2015). doi:10.1016/j.nimb.2014.09.020

    Article  Google Scholar 

  12. 12.

    W. Lu, F.X. Gallmeier, P.J. Geoghegan et al., A reevaluation of radiation damage cross sections. J. Nucl. Mater. 431(1), 33–38 (2012). doi:10.1016/j.jnucmat.2011.12.016

    Article  Google Scholar 

  13. 13.

    M.S. Sabra, R.A. Weller, M.H. Mendenhall et al., Validation of nuclear reaction codes for proton-induced radiation effects: the case for CEM03. IEEE Trans. Nucl. Sci. 58(6), 3134–3138 (2011). doi:10.1109/TNS.2011.2169989

    Article  Google Scholar 

  14. 14.

    Y.E. Titarenko, V.F. Batyaev, R.D. Mulambetov et al., Excitation functions of product nuclei from 40 to 2600 MeV proton-irradiated 206,207,208, nat Pb and 209 Bi. Nucl. Instrum. Methods A 562(2), 801–805 (2006). doi:10.1016/j.nima.2006.02.059

    Article  Google Scholar 

  15. 15.

    M.B. Chadwick, P. Obložinský, M. Herman et al., ENDF/B-VII. 0: next generation evaluated nuclear data library for nuclear science and technology. Nucl. Data Sheets 107(12), 2931–3060 (2006). doi:10.1016/j.nds.2006.11.001

    Article  Google Scholar 

  16. 16.

    D. Fan, Y. Yang, Y. Gao et al. Thermal-hydraulics design of the LBE spallation target system for CIADS, in 23nd International Conference on Nuclear Engineering (ICONE23), Chiba, Japan, May. 17–21, 2015

  17. 17.

    Y. Iwamoto, H. Iwamoto, M. Harada et al., Calculation of displacement cross-sections for structural materials in accelerators using PHITS event generator and its applications to radiation damage. J. Nucl. Sci. Technol. 51(1), 98–107 (2014). doi:10.1080/00223131.2013.851042

    Article  Google Scholar 

  18. 18.

    M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 33(1), 50–54 (1975). doi:10.1016/0029-5493(75)90035-7

    Article  Google Scholar 

  19. 19.

    Y. Dai, Y. Foucher, M.R. James et al., Neutronics calculation, dosimetry analysis and gas measurements of the first SINQ target irradiation experiment, STIP-I. J. Nucl. Mater. 318, 167–175 (2003). doi:10.1016/S0022-3115(03)00099-0

    Article  Google Scholar 

  20. 20.

    T. Obara, T. Miura, Y. Fujita et al., Preliminary study of the removal of polonium contamination by neutron-irradiated Lead–Bismuth Eutectic. Ann. Nucl. Energy 30(4), 497–502 (2003). doi:10.1016/S0306-4549(02)00089-0

    Article  Google Scholar 

  21. 21.

    A.J. Koning, D. Rochman, S. van der Marck et al., TENDL-2014: TALYS-based evaluated nuclear data library.

  22. 22.

    Z. Tong, Y. Dai, The microstructure and tensile properties of ferritic/martensitic steels T91, Eurofer-97 and F82H irradiated up to 20dpa in STIP-III. J. Nucl. Mater. 398(1), 43–48 (2010). doi:10.1016/j.jnucmat.2011.04.029

    Article  Google Scholar 

Download references


The authors would like to express their thanks to the colleague in INEST for having provided us with the design scheme of CLEAR-I.

Author information



Corresponding author

Correspondence to Yong-Wei Yang.

Additional information

This work is supported by Strategic Priority Research Program of Chinese Academy of Sciences under Grant Number of XDA03030102.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yang, YW. & Gao, YC. Preliminary physics study of the Lead–Bismuth Eutectic spallation target for China Initiative Accelerator-Driven System. NUCL SCI TECH 27, 120 (2016).

Download citation


  • LBE spallation target
  • Target behavior in subcritical reactor
  • Neutron flux
  • Energy deposition
  • Radiation damage
  • 210Po accumulated quantities