Skip to main content

Pinhole imaging to observe spatial jitters of a triple-pulse X-ray source on the Dragon-II LIA

Abstract

In high-energy flash radiography, scattered photons degrade the acquiring image, which limits the resolving power of interfaces and density of dense object. The application of large anti-scatter grid can reduce the scattered photons remarkably, but this requires a stable source position in order to reduce the loss of signal photons in the grid structure. The pinhole imaging technique is applied to observe spatial jitters of a triple-pulse radiographic source of a linear induction accelerator. Numerical simulations are conducted to analyze the imaging performance with the same or close parameters of the pinhole object and experimental alignment. Experiments are carried out to observe spatial jitters of the source between different measurements. Deviations of the source position between different pulses are measured in each experiment.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

The source FWHM is 1.0 mm

Fig. 3
Fig. 4

References

  1. 1.

    T.P. Hughes, D.C. Moir, R.L. Carlson, Upgrade of the PHERMEX Accelerator, Conference Record of the 1991 IEEE Particle Accelerator Conference, vols 1–5 (Accelerator Science and Technology, 1991)

  2. 2.

    P. Allison, M.J. Burns, G.J. Caporaso et al., Beam-Breakup Calculation for the DARHT Accelerator, Conference Record of the 1991 IEEE Particle Accelerator Conference, vols 1–5 (Accelerator Science and Technology, 1991)

  3. 3.

    C. Ekdahl, Modern electron accelerators for radiography. IEEE Trans. Plasma Sci. 30, 254–261 (2002)

    Article  Google Scholar 

  4. 4.

    B.T. McCuistian, O. Abeyta, P. Aragon et al., DARHT-II Commissioning Status, PPC-2003: 14th IFFF International Pulsed Power Conference, vols 1 and 2 (Digest of Technical Papers, 2003)

  5. 5.

    J. Deng, B. Ding, H. Wang et al., Physical design of the Dragon-I linear induction accelerator. High Power Laser Part. Beams 15, 502–504 (2003). (in Chinese)

    Google Scholar 

  6. 6.

    B.N. Ding, J.J. Deng, H.C. Wang et al., Dragon-I linear induction electron accelerator. High Energy Phys. Nucl. Phys. Chin. Ed. 29, 604–610 (2005). (in Chinese)

    Google Scholar 

  7. 7.

    B. Li, J. Shi, J. Liu et al., Numerical simulation of distribution of scattered exposure and reduced scatter in flash radiographic system. High Power Laser Part. Beams 17, 788–792 (2005). (in Chinese)

    Google Scholar 

  8. 8.

    J. Shi, B. Li, J. Liu et al., Analytic determination of scatter exposure for radiography. High Power Laser Part. Beams 18, 1211–1214 (2006). (in Chinese)

    Google Scholar 

  9. 9.

    J.L. Gerstenmayer, M. Nicolaizeau, P. Vibert, Multihole graded collimator: quantitative tomographic measurements, Proc. SPIE 1757, Ultrahigh- and High-Speed Photography, Videography, and Photonics, 40 (1993). doi:10.1117/12.139152

  10. 10.

    F.J. Goldin, S. Mitchell, Collimated step-wedge spectrometer for flash X-ray radiography sources. Hard X-ray Gamma-ray Detect. Phys. V 5198, 126–133 (2004). doi:10.1117/12.503868

    Article  Google Scholar 

  11. 11.

    Z. Xiao, J. Liu, B. Hu et al., Experimental research of the performance of graded collimators in high-energy flash X-ray radiography. Nucl. Electron. Detect. Technol. 27, 512–515 (2007). (in Chinese)

    Google Scholar 

  12. 12.

    S.A. Watson, M. Appleby, J. Klinger et al., Design, Fabrication and Testing of a Large Anti-Scatter Grid for Megavolt Gamma-ray Imaging, 2005 IEEE Nuclear Science Symposium Conference Record, Vols 1–5 (2005)

  13. 13.

    T. Tsunoo, N. Nakamori, H. Kanamori et al., The influences of incorrect placement of the focused grid an X-ray image formation. Phys. Med. Imaging 3336, 651–659 (1998). doi:10.1117/12.317070

    Google Scholar 

  14. 14.

    Y. Kiwamoto, Y. Kikuchi, T. Takahashi et al., Pinhole camera imaging of X-rays and energetic neutral atoms for hot plasma diagnostics. Rev. Sci. Instrum. 69, 2574–2575 (1998). doi:10.1063/1.1148962

    Article  Google Scholar 

  15. 15.

    W. Leitenberger, H. Wendrock, L. Bischoff et al., Pinhole interferometry with coherent hard X-rays. J. Synchrotron Radiat. 11, 190–197 (2004). doi:10.1107/s0909049503029169

    Article  Google Scholar 

  16. 16.

    E. Samei, M.J. Flynn, D.A. Reimann, A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med. Phys. 25, 102–113 (1998). doi:10.1118/1.598165

    Article  Google Scholar 

  17. 17.

    C. Ekdahl, Characterizing flash-radiography source spots. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 28, 2501–2509 (2011)

    Article  Google Scholar 

  18. 18.

    S. Agostinelli, J. Allison, K. Amako et al., GEANT4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003). doi:10.1016/s0168-9002(03)01368-8

    Article  Google Scholar 

  19. 19.

    D. Sardari, R. Maleki, H. Samavat et al., Measurement of depth-dose of linear accelerator and simulation by use of Geant4 computer code. Rep. Pract. Oncol. Radiother. 15, 64–68 (2010). doi:10.1016/j.rpor.2010.03.001

    Article  Google Scholar 

  20. 20.

    J.M. Boone, J.A. Seibert, An analytical edge spread function model for computer fitting and subsequent calculation of the LSF and MTF. Med. Phys. 21, 1541–1545 (1994). doi:10.1118/1.597264

    Article  Google Scholar 

  21. 21.

    A. Karellas, L.J. Harris, H. Liu et al., Charge-coupled device detector—performance considerations and potential for small-field mammographic imaging applications. Med. Phys. 19, 1015–1023 (1992). doi:10.1118/1.596819

    Article  Google Scholar 

  22. 22.

    Y.J. Chen, Corkscrew modes in linear accelerators. Nucl. Instrum. Methods Phys. Res., Sect. A 292, 455–464 (1990). doi:10.1016/0168-9002(90)90403-s

    Article  Google Scholar 

  23. 23.

    W. Zhang, Z. Dai, H. Li et al., Beam Instability and Correction for “Dragon-I”, 2007 IEEE Particle Accelerator Conference, vols 1–11 (2007)

  24. 24.

    H.B. Xu, Y. Ye, N. Zheng, Influence of source out of focused grid on image in high-energy X-ray radiography. High Power Laser Part. Beams 27, 115103 (2015). doi:10.11884/HPLPB201527.115103. (in Chinese)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, ZY., Jing, XB. et al. Pinhole imaging to observe spatial jitters of a triple-pulse X-ray source on the Dragon-II LIA. NUCL SCI TECH 27, 110 (2016). https://doi.org/10.1007/s41365-016-0106-6

Download citation

Keywords

  • Spatial jitter
  • X-ray source
  • Pinhole imaging
  • Linear induction accelerator