Skip to main content

Production of medical radioisotope 64Cu by photoneutron reaction using ELI-NP γ-ray beam


Copper-64 is a radioisotope of medical interest that could be used for positron emission tomography imaging and targeted radiotherapy of cancer. In this work, we investigated the possibility of producing the \(^{64}\)Cu isotope through a \(^{65}\)Cu(\(\gamma \),n) reaction using high-intensity \(\gamma \)-beams produced at the Extreme Light Infrastructure-Nuclear Physics facility (ELI-NP). The specific activity for \(^{64}\)Cu was obtained as a function of target geometry, irradiation time, and electron beam energy, which translates into \(\gamma \)-beam energy. Optimized conditions for the generation of \(^{64}\)Cu isotopes at the ELI-NP were discussed. We estimated that an achievable saturation specific activity is of the order of 1–2 mCi/g for thin targets (radius 1–2 mm, thickness 1 cm) and for a \(\gamma \)-beam flux of 10\(^{11}\) s\(^{-1}\). Based on these results, the ELI-NP could provide great potential for the production of some innovative radioisotopes of medical interest in sufficient quantities suitable for nuclear medicine research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    S. Gao, Q. Ma, Q. Wen et al., \(^{99m}\)Tc-3P4-RGD2 radiotracers for SPECT/CT of esophageal tumor. Nucl. Sci. Tech. 24, 040302 (2013). doi:10.13538/j.1001-8042/nst.24.040302

    Google Scholar 

  2. 2.

    B.L. Zhuikov, Production of medical radionuclides in Russia: status and future-a review. Appl. Radiat. Isot. 84, 48–56 (2014). doi:10.1016/j.apradiso.2013.11.025

    Article  Google Scholar 

  3. 3.

    D. Habs, U. Köster, Production of medical radioisotopes with high specific activity in photonuclear reactions with \(\gamma \)-beams of high intensity and large brilliance. Appl. Phys. B 103, 501–519 (2011). doi:10.1007/s00340-010-4278-1

    Article  Google Scholar 

  4. 4.

    V.N. Litvinenko, B. Burnham, M. Emamian et al., Gamma-ray production in a storage ring free-electron laser. Phys. Rev. Lett. 78, 4569–4572 (1997). doi:10.1103/PhysRevLett.78.4569

    Article  Google Scholar 

  5. 5.

    W. Luo, H.B. Zhuo, Y.Y. Ma et al., Ultrashort-pulse MeV positron beam generation from intense Compton-scattering \(\gamma \)-ray source driven by laser wakefield acceleration. Laser Part. Beams 2013(31), 89–94 (2013). doi:10.1017/S0263034612000948

    Article  Google Scholar 

  6. 6.

    W. Luo, W. Xu, Q.Y. Pan et al., X-ray generation from slanting laser-Compton scattering for future energy-tunable Shanghai laser electron gamma source. Appl. Phys. B: Lasers Opt. 101, 761–771 (2010). doi:10.1007/s00340-010-4100-0

    Article  Google Scholar 

  7. 7.

  8. 8.

    C.J. Anderson, R. Ferdani, Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother. Radiopharm. 24, 379–393 (2009). doi:10.1089/cbr.2009.0674

    Article  Google Scholar 

  9. 9.

    C. Sun, Y.K. Wu, Theoretical and simulation studies of characteristics of a Compton light source. Phys. Rev. ST Accel. Beams 14, 044701 (2011). doi:10.1103/PhysRevSTAB.14.044701

    Article  Google Scholar 

  10. 10.

    W.J. Brown, S.G. Anderson, C.P.J. Barty et al., Experimental characterization of an ultrafast Thomson scattering X-ray source with three-dimensional time and frequency-domain analysis. Phys. Rev. ST Accel. Beams 7, 060702 (2004). doi:10.1103/PhysRevSTAB.7.060702

    Article  Google Scholar 

  11. 11.

    W. Luo, W. Xu, Q.Y. Pan et al., A 4D Monte Carlo laser-Compton scattering simulation code for the characterization of the future energy-tunable SLEGS. Nucl. Instr. Methods A 660, 108–115 (2011). doi:10.1016/j.nima.2011.09.035

    Article  Google Scholar 

  12. 12.

    W. Luo, H.B. Zhuo, Y.Y. Ma et al., The nonlinear effect in relativistic Compton scattering for an intense circularly polarized laser. Phys. Scr. 89, 075208 (2014). doi:10.1088/0031-8949/89/7/075208

    Article  Google Scholar 

  13. 13.

    S. Agostinelli, Geant4 collaboration, GEANT4: a simulation toolkit. Nucl. Instr. Methods A 506, 250–303 (2003). doi:10.1016/S0168-9002(03)01368-8

  14. 14.

    D. Filipescu, H. Utsunomiya, I. Gheorghe et al., Geant4 simulations on Compton scattering of laser photons on relativistic electrons. AIP Conf. Proc. 1645, 322 (2015). doi:10.1063/1.4909594

    Article  Google Scholar 

  15. 15.

    D. Filipescu, et al., Laser Compton scattering simulation code

  16. 16.

    W. Luo et al., Monte Carlo simulation for determining photonuclear production of medical isotopes using Compton scattering gamma-beam

  17. 17.

    IAEA Nuclear data services,

  18. 18.

    M, Herman, R. Capote, B.V. Carlson et al., EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets 108, 2655–2715 (2007). doi:10.1016/j.nds.2007.11.003.

  19. 19.

    A.J Koning, D. Rochman,

  20. 20.

    V.V. Varlamov, N.G. Efimkin, B.S. Ishkhanov et al., Evaluation of cross sections for \(^{63,65}\)Cu(\(\gamma \), np) and \(^{63,65}\)Cu(\(\gamma \), p) reactions in the GDR region and isospin disintegration in GDR nuclei. Bull. Rus. Acad. Sci. Phys. 59, 911–920 (1995)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Wen Luo.

Additional information

This work was supported by Extreme Light Infrastructure-Nuclear Physics (ELI-NP)—Phase I, a project co-financed by the European Union through the European Regional Development Fund, the National Natural Science Foundation of China (No. 11405083) and the Young Talent Project of the University of South China.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, W. Production of medical radioisotope 64Cu by photoneutron reaction using ELI-NP γ-ray beam. NUCL SCI TECH 27, 96 (2016).

Download citation


  • Copper-64
  • Medical radioisotope
  • Photoneutron reaction
  • ELI-NP