Skip to main content

Investigation of neutronic parameters of natU spallation target irradiated by low-energy protons

Abstract

Accelerator-based neutron sources could outstandingly compete with the reactor-based ones, which are widely used for research aims and radioisotope production. Spallation neutron sources are used by many research centers. In this work, the potential of natural uranium spallation target irradiated by low-energy protons for production of an external neutron source was investigated. MCNPX code was used to model the spallation target. The results showed using 30-MeV protons of 100 µA current a neutron flux in order of 107 n/s·cm2 leaks from an optimized-dimension target. Different physical models available in the computational code do not result in significant relative discrepancies for neutron yield and deposited heat calculations. Water with a velocity of 0.6 m/s can be used as coolant for the spallation target to keep the surface temperature under 100 °C at atmospheric pressure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    G.J. Russell, Spallation PhysicsAn Overview. 1CANS-XI International Collaboration on Advanced Neutron Sources KEK. Tsukuba, 22–26 Oct 1990

  2. 2.

    K. Ismailov, M. Saito, H. Sagara et al., Feasibility of uranium spallation target in accelerator-driven system. Prog. Nucl. Energy 53, 925–929 (2011). doi:10.1016/j.pnucene.2011.05.019

    Article  Google Scholar 

  3. 3.

    S.R. Hashemi-Nezhad, I. Zhuk, M. Kievets et al., Determination of natural uranium fission rate in fast spallation and fission neutron field: an experimental and Monte Carlo study. Nucl. Instrum. Methods Phys. Res. A 591, 517–529 (2008). doi:10.1016/j.nima.2008.02.101

    Article  Google Scholar 

  4. 4.

    S.R. Hashemi-Nezhad, W. Westmeier, M. Zamani-Valasiadou et al., Optimal ion beam, target type and size for accelerator driven systems: implications to the associated accelerator power. Ann. Nucl. Energy 38, 1144–1155 (2011). doi:10.1016/j.anucene.2010.12.008

    Article  Google Scholar 

  5. 5.

    S. Sahin, B. Sarer, Y. Celik, Energy multiplication and fissile fuel breeding limits of accelerator-driven systems with uranium and thorium targets. Int. J. Hydrogen Energy 40, 4037–4046 (2015). doi:10.1016/j.ijhydene.2015.01.141

    Article  Google Scholar 

  6. 6.

    G.J. Russell, J.S. Gilmore, S.D. Prael et al., Los Alamos Scientific Lab., NM (USA); Kansas State Univ., Manhattan (USA) Spallation target-moderator-reflector studies at the Weapons Neutron Research. 1980; 26 p; Symposium on neutron cross sections from 10–50 MeV. Upton, NY, USA, 12–14 May 1980

  7. 7.

    R.G. Vasil’kov, V.I. Gol’danskij, B.A. Pimenov et al., Neutron multiplication in uranium bombarded with 300–660 MeV protons. Sov. J. At. Energy 44(4), 329–335 (1978)

    Google Scholar 

  8. 8.

    D.B. Pelowitz, Users’ manual versión of MCNPX2.6.0, LANL, LA-CP-07-1473 (2008)

  9. 9.

    A. Krasa, in Spallation Reaction Physics, this is a revised version of the manuscript for the lecture\Neutron Sources for ADS for students of the Faculty of Nuclear Sciences and Physical Engineering at Czech Technical University in Prague, May 2010

  10. 10.

    W.M. Stacy, Nuclear Reactor Physics (Wiley, Hoboken, 2001)

    Google Scholar 

  11. 11.

    M.J. Kim, H. Bhang, J.H. Kim et al., A Monte-Carlo intranuclear cascade calculation for the propagation of energetic nucleons in the nucleus. J. Korean Phys. Soc. 46(4), 805–812 (2005)

    Google Scholar 

  12. 12.

    J.K. Shultis, R.E. Faw, An MCNP Primer. Dept. of Mechanical and Nuclear Engineering, Kansas State University. Copyright: 2004–2010

  13. 13.

    J.F. Briesmeister, MCNP-A General Monte Carlo N-Particle Transport code Version 4C. Los Alamos National Laboratory Report, USA, LA-13709-M (2000)

  14. 14.

    D. Ridikas, Radioactivity Inventory of the Test Uranium Target at TRIUMF. Internal report: CEA Saclay, DSM/IRFU/SPhN, March 2008

  15. 15.

    B. Rapp, J.C. David, V. Blideanu, D. Doré et al., Benchmarking of the modeling tools within the EURISOL DS project, in Proceedings of International Workshop on Shielding Aspects of Accelerators, Targets and Irradiation Facilities (SATIF-8), Pohang, South Korea, 22–26 May 2006

  16. 16.

    A.W. Schulke Jr., IPNS enriched uranium booster target, in Proceedings of the Eighth Meeting of the International Collaboration on Advanced Neutron Sources (ICANS-VIII), Rutherford Appleton Laboratory Report RAL-85-110. 8–12 July 1985

  17. 17.

    K.D. Timmerhaus, R.W. Fast, A.F. Clark et al., Adv. Cryog. Eng. 31, 1017 (1985)

    Google Scholar 

  18. 18.

    Y. Malyshkin, I. Pshenichnov, I. Mishustin et al., Monte Carlo modeling of spallation targets containing uranium and americium. Nucl. Instrum. Methods Phys. Res. B 334, 8–17 (2014)

    Article  Google Scholar 

  19. 19.

    W. Chou, Spallation Neutron Sources and Other High Intensity Proton Sources (Fermi National Accelerator Laboratory, Batavia, 2003)

    Google Scholar 

  20. 20.

    R. Pynn, in Spallation Neutron Source & Neutron Production (Indiana University, Bloomington)

  21. 21.

    S.C. Joshi, Critical Aspects of Spallation Neutron Sources. Raja Ramanna Centre for Advanced Technology, Indorem Indo-Japan School on Advanced Accelerators of Ions & Electrons, 17 Feb 2015

  22. 22.

    H. Miyamaru, I. Murata, Y. Ootera et al., Neutron emission profile of d-Be reaction with low-energy deuteron beam for accelerator neutron source. J. Nucl. Sci. Technol. 5, 58–61 (2008)

    Article  Google Scholar 

  23. 23.

    M.E. Capoulat, M.S. Herrera, D.M. Minsky et al., The 9Be(d,n) 1B reaction as a neutron source for boron neutron capture therapy, in X Latin American Symposium on Nuclear Physics and Applications (X LASNPA), 1–6 December, Montevideo, Uruguay (2013)

  24. 24.

    T. Inada, K. Kawachi, T. Hiramoto, Neutrons from thick target beryllium (d,n) reactions at 1.0 MeV to 3.0 MeV. J. Nucl. Sci. Technol. 5, 22–29 (1968)

    Article  Google Scholar 

  25. 25.

    C.M. Logan, R. Booth, R. Nickerson, A compact berkelium target for production of fast neutrons. Nucl. Instrum. Methods 145, 77–79 (1977)

    Article  Google Scholar 

  26. 26.

    J.C. David, Spallation reactions: a successful interplay between modeling and applications. Eur. Phys. J. A 51, 1–57 (2015)

    Article  Google Scholar 

  27. 27.

    M. Blann, H. Gruppelaar, P. Nagel et al., International code comparison for intermediate energy, in Nuclear Energy Agency Organization for Economic Co-operation and Development (1993)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zohreh Gholamzadeh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gholamzadeh, Z., Mirvakili, S., Davari, A. et al. Investigation of neutronic parameters of natU spallation target irradiated by low-energy protons. NUCL SCI TECH 27, 95 (2016). https://doi.org/10.1007/s41365-016-0082-x

Download citation

Keywords

  • natU target
  • Spallation
  • Neutronic parameters
  • MCNPX 2.6.0 code