Skip to main content

Mercury (II) detection by water-soluble photoluminescent ultra-small carbon dots synthesized from cherry tomatoes

Abstract

Mercury ions have been considered highly toxic to human health. What would be great is to develop the ionic probes without any toxicities themselves. Here, we report a friendly, highly sensitive mercury (II) ionic probe, water-soluble photoluminescence carbon dots which were synthesized by simply hydrothermal treatment of fresh cherry tomatoes without adding any other reagents. The ultra-small (<1 nm) carbon dots show robust excitation-depended photoluminescence under a wide pH range (4–10) or a strong ionic strength of up to 1 M, and the detection limit of mercury (II) has been determined as low as 18 nM. We envision such water-soluble, biocompatible carbon dots that could be applied to biolabeling, bio-imaging, and biosensing fields.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    W. Zheng, M. Aschner, J.F. Ghersi-Egea, Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol. Appl. Pharmacol. 192, 1–11 (2003). doi:10.1016/s0041-008x(03)00251-5

    Article  Google Scholar 

  2. 2.

    Agency U. E. P., Regulatory Impact Analysis of the Clean Air Mercury Rule EPA-452/R-05 003 (Research Triangle Park, North Carolina, 2005)

    Google Scholar 

  3. 3.

    Y.Q. Wang, Y. Liu, X.W. He et al., Highly sensitive synchronous fluorescence determination of mercury (II) based on the denatured ovalbumin coated CdTe QDs. Talanta 99, 69–74 (2012). doi:10.1016/j.talanta.2012.04.064

    Article  Google Scholar 

  4. 4.

    M.R. Chao, Y.Z. Chang, J.L. Chen, Hydrophilic ionic liquid-passivated CdTe quantum dots for mercury ion detection. Biosens. Bioelectron. 42, 397–402 (2013). doi:10.1016/j.bios.2012.10.065

    Article  Google Scholar 

  5. 5.

    J. Ke, X. Li, Q. Zhao et al., Ultrasensitive quantum dot fluorescence quenching assay for selective detection of mercury ions in drinking water. Sci. Rep. 4, 5624 (2014). doi:10.1038/srep05624

    Article  Google Scholar 

  6. 6.

    J. Pei, H. Zhu, X. Wang et al., Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (II) detection. Anal. Chim. Acta 757, 63–68 (2012). doi:10.1016/j.aca.2012.10.037

    Article  Google Scholar 

  7. 7.

    M. Bottini, T. Mustelin, Carbon materials—nanosynthesis by candlelight. Nat. Nanotechnol. 2, 599–600 (2007). doi:10.1038/nnano.2007.316

    Article  Google Scholar 

  8. 8.

    A.P. Demchenko, M.O. Dekaliuk, Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods Appl. Fluoresc. 1, 1–17 (2013). doi:10.1088/2050-6120/1/4/042001

    Google Scholar 

  9. 9.

    H.T. Li, Z.H. Kang, Y. Liu et al., Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230–24253 (2012). doi:10.1039/C2jm34690g

    Article  Google Scholar 

  10. 10.

    W. Lu, X. Qin, S. Liu et al., Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal. Chem. 84, 5351–5357 (2012). doi:10.1021/ac3007939

    Article  Google Scholar 

  11. 11.

    C. Zhu, J. Zhai, S. Dong, Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem. Commun. 48, 9367–9369 (2012). doi:10.1039/c2cc33844k

    Article  Google Scholar 

  12. 12.

    J.J. Zhou, Z.H. Sheng, H.Y. Han et al., Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater. Lett. 66, 222–224 (2012). doi:10.1016/j.matlet.2011.08.081

    Article  Google Scholar 

  13. 13.

    Y.X. Sun, Z.W. He, X.B. Sun et al., Synthesis of water-soluble fluorescent carbon dots from a one-step hydrothermal method with potato. Adv. Mater. Res. 873, 770–776 (2013). doi:10.4028/www.scientific.net/AMR.873.770

    Article  Google Scholar 

  14. 14.

    B. Yin, J. Deng, X. Peng et al., Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138, 6551–6557 (2013). doi:10.1039/c3an01003a

    Article  Google Scholar 

  15. 15.

    L. Cao, X. Wang, M.J. Meziani et al., Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129, 11318–11319 (2007). doi:10.1021/Ja073527l

    Article  Google Scholar 

  16. 16.

    C.M. Yu, X.Z. Li, F. Zeng et al., Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem. Commun. 49, 403–405 (2013). doi:10.1039/C2cc37329g

    Article  Google Scholar 

  17. 17.

    W. Wang, Y. Li, L. Cheng et al., Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. J. Mater. Chem. B 2, 46–48 (2014). doi:10.1039/c3tb21370f

    Article  Google Scholar 

  18. 18.

    S.N. Qu, X.Y. Wang, Q.P. Lu et al., A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem. Int. Edit. 51, 12215–12218 (2012). doi:10.1002/anie.201206791

    Article  Google Scholar 

  19. 19.

    W.F. Zhang, H. Zhu, S.F. Yu et al., Observation of lasing emission from carbon nanodots in organic solvents. Adv. Mater. 24, 2263–2267 (2012). doi:10.1002/adma.201104950

    Article  Google Scholar 

  20. 20.

    Y. Sha, J. Lou, S. Bai et al., Hydrothermal synthesis of nitrogen-containing carbon nanodots as the high-efficient sensor for copper(II) ions. Mater. Res. Bull. 48, 1728–1731 (2013). doi:10.1016/j.materresbull.2012.12.010

    Article  Google Scholar 

  21. 21.

    S. Pei, J. Zhang, M. Gao et al., A facile hydrothermal approach towards photoluminescent carbon dots from amino acids. J. Colloid Interface Sci. 439, 129–133 (2015). doi:10.1016/j.jcis.2014.10.030

    Article  Google Scholar 

  22. 22.

    M. Yuan, R. Zhong, H. Gao et al., One-step, green and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw and their bio-applications in labeling, imaging and sensing. Appl. Surf. Sci. 355, 1136–1144 (2015). doi:10.1016/j.apsusc.2015.07.095

    Article  Google Scholar 

  23. 23.

    D.Y. Pan, J.C. Zhang, Z. Li et al., Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem. Commun. 46, 3681–3683 (2010). doi:10.1039/C000114g

    Article  Google Scholar 

  24. 24.

    D.Y. Pan, J.C. Zhang, Z. Li et al., Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734–738 (2010). doi:10.1002/adma.200902825

    Article  Google Scholar 

  25. 25.

    Y.M. Long, C.H. Zhou, Z.L. Zhang et al., Shifting and non-shifting fluorescence emitted by carbon nanodots. J. Mater. Chem. 22, 5917–5920 (2012). doi:10.1039/C2jm30639e

    Article  Google Scholar 

  26. 26.

    L.B. Tang, R.B. Ji, X.K. Cao et al., Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6, 5102–5110 (2012). doi:10.1021/Nn300760g

    Article  Google Scholar 

  27. 27.

    F. Zhang, Z. Ali, F. Amin et al., In vitro and intracellular sensing by using the photoluminescence of quantum dots. Anal. Bioanal. Chem. 397, 935–942 (2010). doi:10.1007/s00216-010-3609-8

    Article  Google Scholar 

  28. 28.

    L. Zhou, Y. Lin, Z. Huang et al., Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem. Commun. 48, 1147–1149 (2012). doi:10.1039/c2cc16791c

    Article  Google Scholar 

  29. 29.

    R.B. Zhong, Y.S. Liu, P. Zhang et al., Discrete nanoparticle-BSA conjugates manipulated by hydrophobic interaction. Acs Appl. Mater. Interfaces 6, 19465–19470 (2014). doi:10.1021/Am506497s

    Article  Google Scholar 

  30. 30.

    M. Yuan, R. Zhong, X. Yun et al., A fluorimetric study on the interaction between a Trp-containing beta-strand peptide and amphiphilic polymer-coated gold nanoparticles. Luminescence (2015). doi:10.1002/bio.2920

    Google Scholar 

  31. 31.

    Y. Liu, P. Zhang, R. Zhong et al., Fluorimetric study on the interaction between fluoresceinamine and bovine serum albumin. Nucl. Sci. Tech. 26, 030505 (2015). doi:10.13538/j.1001-8042/nst.26.030505

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (Nos. 21171086 and 81160213), and Inner Mongolia Grassland Talent (No. 108-108038), Natural Science Foundation of Inner Mongolia Autonomous Region of China (Nos. 2013MS1121 and 2015MS0806), Inner Mongolia Department of Science and Technology (No. 211-202077), and the Inner Mongolia Agricultural University (Nos. 109-108040, 211-109003, and 211-206038).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 591 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Zhong, RB., Yuan, M. et al. Mercury (II) detection by water-soluble photoluminescent ultra-small carbon dots synthesized from cherry tomatoes. NUCL SCI TECH 27, 35 (2016). https://doi.org/10.1007/s41365-016-0038-1

Download citation

Keywords

  • Carbon dots
  • Photoluminescence
  • Cherry tomato
  • Mercury
  • Detection