Skip to main content
Log in

Chemical control against coffee berry disease: the efficacy of fungicides and berry position on disease incidence

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Coffee berry disease (CBD) caused by Colletotrichum kahawae is a major constraint of Arabica coffee production in Africa. CBD-related losses in Cameroon might be estimated to reach up to 80%. The objectives of this study were to compare the efficacy of fungicides on disease incidence at the level of coffee branches and to determine the impact of fungicide on coffee yield. Data via experimental design were conducted at Kouoptamo; West region of Cameroun. Coffee trees were treated for two successive years (2016–2017) with Propiconazole, Difenoconazole, Azoxystrobin and Chlorothalonil/Carbendazim at frequencies of 21 and 28 days at the rate of 4 and 5 annual applications depending on the fungicide. The lower proportion of diseased branches (Estimated Marginal Mean, EMM 16%) and infected berries on the diseased branches (EMM, 7%) was observed on plants treated with Azoxystrobin compared to control (EMM, 55 and 21%, respectively). Branches at the lower level of the tree were more likely to have infected berries than branches in the middle or the upper branches (EMM 19% against 16 and 14%) regardless of the treatment. The yield of Azoxystrobin-treated coffee trees was twice as high as those of the control over the two years of experimentation. This is the first report of the use of Azoxystrobin against CBD and can open a new insight into optimizing effective control of CBD in Arabica coffee plantations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agostini JP, Gottwald TR, Timmer LW (1993) Temporal and spatial dynamics of postbloom fruit drop of citrus in Florida. Phytopathology 83(5):485–490

    Article  Google Scholar 

  • Anonyme (2019) Les formes du relief de la terre—Géographie 6ème modifié le 11/09/2019. https://www.assistancescolaire.com/eleve/6e/geographie/reviser-une-notion/les-formes-du-relief-de-la-terre-6ger01

  • Bahous M, Touhami AO, Badoc A, Douira A (2005) Effet de l’azoxystrobine sur la pyriculariose, l’helminthosporiose et la curvulariose du riz. Bull Soc Pharm Bordeaux 144:27–46

    Google Scholar 

  • Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dbrzanski B (2002) The strobilurin fungicides. Pest Manag Sci 58:649–662. https://doi.org/10.1002/ps.520

    Article  CAS  PubMed  Google Scholar 

  • Berry D, Nankam C, Mouen Bedimo JA, Aubin V (1992) L'anthracnose des baies du caféier (CBD, Coffee Berry Disease) au Cameroun: épidémiologie et lutte chimique, pp 499–509. Actes du 14e Colloque ASIC, San Francisco (USA)

  • Bieysse D, Bella Manga, Mouen Bedimo JA, Ndeumeni JP, Roussel V, Fabre JV, Berry D (2002) L'anthracnose des baies, une menace potentielle pour la culture mondiale de l'arabica. Plantation-Recherche-Développement, Recherche et Caféiculture, Cirad-CP, Montpellier, France, pp 144–152

  • Bote AD, Jan V (2016) Branch growth dynamics, photosynthesis, yield and bean size distribution in response to fruit load manipulation in coffee trees. Trees 30:1275–1285. https://doi.org/10.1007/s00468-016-1365-x

    Article  CAS  Google Scholar 

  • Bouharmont P (1992) Sélection de la variété Java et son utilisation pour la régénération de la caféière arabica au Cameroun. Café Cacao Thé 36(4):247–262

    Google Scholar 

  • Carmona M, Sautua F, Pérez-Hérnandez O, Reis EM (2020) Role of fungicide applications on the integrated management of wheat stripe rust. Front Plant Sci 11:733. https://doi.org/10.3389/fpls.2020.00733

    Article  PubMed  PubMed Central  Google Scholar 

  • Derso E (1997) Coffee diseases and their significance in Ethiopia. ASIC 17, Nairobi, Kenya pp 723–726

  • Evenhuis A, Verdam B, Zadocks JC (1997) Splash dispersal of conidia of Mycocentrospora acerina in the field. Plant Pathol 46:459–469. https://doi.org/10.1046/j.1365-3059.1997.d01-42.x

    Article  Google Scholar 

  • Garedew G, Fikre L, Pinard F (2017) Assessment of berry drop due to coffee disease and non—CBD factors in Arabica coffee under farmers’ fields of South western Ethiopia. Crop Prot 98:276–282. https://doi.org/10.1016/j.cropro.2017.04.012

    Article  Google Scholar 

  • Hillocks RJ, Phiri NA, Overfield D (1999) Coffee pest and disease management options for smallholders in Malawi. Crop Prot 18:199–206. https://doi.org/10.1016/s0261-2194(99)00017-4

    Article  Google Scholar 

  • Lenth R (2019) emmeans: Estimated marginal means, aka least-squares means. R package version 1.3.3. https://CRAN.R-project.org/package=emmeans Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Lòpez-Bravo DF, Virginio EM, Avelino J (2012) Shade is conducive to coffee rust as compared to full exposure under standardized fruit load conditions. Crop Prot 38:21–29. https://doi.org/10.1016/j.cropro.2012.03.011

    Article  Google Scholar 

  • Lovell DJ, Parker SR, Van Peteghem P, Webb DA, Welham SJ (2002) Quantification of raindrop kinetic energy for improved prediction of splash-dispersed pathogens. Phytopathology 92:497–502. https://doi.org/10.1094/PHYTO.2002.92.5.497

    Article  CAS  PubMed  Google Scholar 

  • Marcelo A, Carmona Francisco J, Pérez-Hernández O (2019) Copper phosphite enhances efficacy of a strobilurin-triazole fungicide in controlling late season foliar diseases of soybean. Crop Prot 115:130–134. https://doi.org/10.1016/j.cropro.2018.09.019

    Article  CAS  Google Scholar 

  • Masaba DM, Waller JM (1992) Coffee berry disease: the current status. In: Bailey JA, Jeger MJ (eds). Colletotrichum: biology, pathology and control. C.A.B.I. International, Wallingford, UK pp 237–249

  • Motisi N, Ribeyre F, Poggi S (2019) Coffee tree architecture and its interactions with microclimates drive the dynamics of coffee berry disease in coffee trees. Sci Res 9(1):2544. https://doi.org/10.1038/s41598-019-38775-5

    Article  ADS  CAS  Google Scholar 

  • Mouen Bedimo JA, Bieysse D, Cilas C, Nottéghen JL (2007a) Spatio—temporal dynamics of Arabica coffee berry disease due to Colletotrichum kahawae on a plot scale. Plant Dis 91:1229–1236. https://doi.org/10.1094/PDIS-91-10-1229

    Article  CAS  PubMed  Google Scholar 

  • Mouen Bedimo JA, Bieysse D, Njiayouom I, Deumeni JP, Cilas C, Nottéghem JL (2007b) Effect of cultural practices on the development of arabica coffee berry disease, caused by Colletotrichum kahawae. Eur J Plant Pathol 119:391–400. https://doi.org/10.1007/s10658-007-9169-x

    Article  Google Scholar 

  • Mouen Bedimo JA, Njiagouom I, Bieysse D, Ndoumbè Nkeng M, Cilas C, Nottèghem JL (2008) Effect of shade on Arabica coffee berry disease development: toward an agroforestry system to reduce disease impact. Phytopathology 98:1320–1325. https://doi.org/10.1094/PHYTO-98-12-1320

    Article  CAS  PubMed  Google Scholar 

  • Mouen Bedimo JA, Cilas C, Nottéghem JL, Bieysse D (2012) Effect of temperature and rainfall variation on the development of coffee berry disease caused by Colletotrichum kahawae. Crop Prot 31:125–131. https://doi.org/10.1016/j.cropro.2011.09.010

    Article  Google Scholar 

  • Mueller DS, Jeffers SN, Buck JW (2005) Toxicity of fungicides to urediniospores of six rust fungi that occur on ornamental crops. Plant Dis 859:255–261. https://doi.org/10.1094/pd-89-0255

    Article  Google Scholar 

  • Muller RA, Berry D, Avelino J, Bieysse D (2004). Coffee diseases. In: Wintgens JN (ed) Coffee growing, processing, sustainable production. A Guide Book for Growers, Processors, Traders and Researchers, pp 493–545

  • Muller RA, Gestin AJ (1967) Contribution de la mise au point des méthodes de lutte contre l’anthracnose des baies du caféier d’Arabie (Coffea arabica) due à une forme de Colletotrichum caffeanum Noack au Cameroun. Café Cacao Thé 11:157–178

    Google Scholar 

  • Muller RA (1980). Contribution à la connaissance de la phytomycocénose constituée par Coffea arabica L., Colletotrichum coffeanum Noack (sensu Hindorf), Hemileia vastatrix B. et Br., Hemileia coffeicola. Maublanc et Roger. Paris, France, Institut Français du Café et du Cacao, Bulletin n°15. p 174

  • Nicholson RL (1992) Colletotrichum graminicola and the anthracnose diseases of maize and sorghum. In: Bailey JA, Jeger MJ (eds) Colletotrichum: biology, pathology, and control. CAB International, Wallingford, U.K., pp 186–202

    Google Scholar 

  • Nyoro JK, Sprey LH (1986) Introducing Ruiru 11 to estates and smallholders. Kenya Coffee 51:7–28

    Google Scholar 

  • Pfender WF (2006) Inter- action of fungicide physical modes of action and plant phenology in control of stem rust of perennial ryegrass grown for seed. Plant Dis 90:1225–1232. https://doi.org/10.1094/PD-90-1225

    Article  CAS  PubMed  Google Scholar 

  • Phiri NA, Hillocks RJ, Jeffries P (2001) Incidence and severity of coffee disease in smallholder plantations in northern Malawi. Crop Prot 20:325–332. https://doi.org/10.1016/S0261-2194(00)00161-7

    Article  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Regazzoni N, Mouen Bedimo JA, Bar-Hen A, Berry D, Cilas C (1997) Mise au point de protocoles de traitements contre l’anthracnose des baies (CBD) du caféier Arabica au Cameroun. ASIC, 17e colloque. Nairobi 1997:708–713

    Google Scholar 

  • Van Der Graaf NA (1992) Coffee berry disease, In: Plant Diseases of International Importance, Vol. 6. Mukhopadhyay AN, Kuman J, Singh US, Chaube HS (eds). Englewood Cliffs, Prentice Hall, NJ pp 202–230

  • Van der Vossen HAM, Walyaro DJ (1980) Breeding for resistance to coffee berry disease in Coffea arabica L., 2. Inherit Resist Euphytica 29:777–791

    Article  Google Scholar 

  • Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40(1):1–29

    Article  MathSciNet  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  • Wong FP, Wilcox WF (2001) Comparative physical modes of action of azoxystrobin, mancozeb, and metalaxyl against Plasmopara viticola (grapevine downy mildew). Plant Dis 85:649–656

    Article  CAS  PubMed  Google Scholar 

  • Zadocks JC, Schein RD (1979) Epidemiology and plant disease management. Oxford University Press. 427p

Download references

Acknowledgements

This work was made possible thanks to financial and technical support from IRAD, CIRAD and FODECC/MINRESI (Coffee and Cocoa Sector Fund of the Ministry of Scientific Research and Innovation). We are very grateful to Alexander von Humboldt foundation for equipment donation to support the laboratory of Plant Physiology at the Higher Teacher Training College, University of Yaounde I (N. Niemenak, grant Ref 3.4–1115305–CMR–GF). We would like to thank the "Les frères du Noun" company in Cameroon (located in Kouoptamo) for its financial support and release of climate data from their weather station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Niemenak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kacko, A., Bedimo, J.A.M., Ribeyre, F. et al. Chemical control against coffee berry disease: the efficacy of fungicides and berry position on disease incidence. J Plant Dis Prot 131, 533–544 (2024). https://doi.org/10.1007/s41348-023-00849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-023-00849-y

Keywords

Navigation