Skip to main content
Log in

Effect of biological activity of Carapa procera seed oil on the tomato leaf miner, Tuta absoluta

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Tuta absoluta poses a serious threat to tomato production worldwide as it can cause important yield losses. Its control is currently mainly based on the use of synthetic chemical insecticides, which unfortunately selects resistant populations and entails public health risks. The aim of this study was to evaluate the insecticidal, repellent and sublethal effects of Carapa procera seed oil on all stages of T. absoluta. Larvicidal (by contact and by ingestion), ovicidal and anti-feeding effects were evaluated by testing 1.5%, 3%, 4.5%, 6% and 7.5% concentrations of oil. Larvicidal and ovicidal effects were tested by direct application of Carapa solutions on larvae and eggs but also by feeding the larvae leaves dipped in solutions. The adult repellent effect was investigated by identifying the preferred area on filter paper partly non-treated versus fully treated using LC10, LC50 et LC90 of larvae after ingestion. LC50 was also used on 2-day-old larvae to evaluate the sublethal effects on larval and pupal duration, longevity and adult morphology. Results showed that, regardless of the mode of application, all concentrations had larvicidal effects with a higher dose-response effect and a higher mortality rate via ingestion than via topical application. The ovicidal effect varied with the concentrations tested, the highest mortality rate was obtained at a concentration of 7.5%. At the same dose, Carapa oil reduced large feeding galleries from 92.22 ± 5.02% in controls to 3.33 ± 3.65% at the highest dose and had a repellent effect on 80% of adults. Carapa oil increased larval and pupal duration by 2.14 and 1.35 days, respectively, and reduced adult female longevity by 2.2 days and male longevity by 1.1 days. A deformation rate of 28.33% was observed in newly emerged adults. This study demonstrated insecticidal and insect repellent effects of Carapa oil on different stages of T. absoluta. This botanical oil is a very promising biopesticide to control this major new pest of Solanaceous crops. Its use in an agroecological pest management strategy is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18(2):265–267

    Article  CAS  Google Scholar 

  • Abdelgaleil SM, Nakatani M (2003) Antifeeding activity of limonoids from Khaya senegalensis (Meliaceae). J Appl Entomol 127(4):236–239

    Article  CAS  Google Scholar 

  • Abedi Z, Saber M, Vojoudi S, Mahdavi V, Parsaeyan E (2014) Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. J Insect Sci 14(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  • Adjé FA, Koffi EN, Koné KY, Meudec E, Adima AA, Lozano PR, Lozano YF, Gaydou EM (2019) Polyphenol characterization in red beverages of Carapa procera (DC) leaf extracts. Beverages 5(4):68

    Article  Google Scholar 

  • Allison PD (2010) Survival analysis using SAS: a practical guide. Sas Institute

  • Álvarez D, Zuleta D, Saldamando C, Lobo-Echeverri T (2021) Selective activity of Carapa guianensis and Swietenia macrophylla (Meliaceae) against the corn and rice strains of Spodoptera frugiperda (Lepidoptera: Noctuidae). Int J Pest Manag. https://doi.org/10.1080/09670874.2021.1981484

    Article  Google Scholar 

  • Ambrozin ARP, Leite AC, Bueno FC, Vieira PC, Fernandes JB, Bueno OC, Silva MF et al (2006) Limonoids from andiroba oil and Cedrela fissilis and their insecticidal activity. J Braz Chem Soc 17:542–547

    Article  CAS  Google Scholar 

  • Arivoli S, Tennyson S (2013) Antifeedant activity, developmental indices and morphogenetic variations of plant extracts against Spodoptera litura (Fab) (Lepidoptera: Noctuidae). J Entomol Zool Stud 1(4):87–96

    Google Scholar 

  • Ayinde AA, Morakinyo OM, Sridhar MKC (2020) Repellency and larvicidal activities of Azadirachta indica seed oil on Anopheles gambiae in Nigeria. Heliyon 6(5):e03920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa P, Gross P, Kemper J (1991) Influence of plant allelochemicals on the tobacco hornworm and its parasitoid. Cotesia Congregata Ecol 72(5):1567–1575

    Article  CAS  Google Scholar 

  • Biondi A, Zappalà L, Di Mauro A, Tropea Garzia G, Russo A, Desneux N et al (2016) Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis?. Biol Control 61(1):79–90

    Google Scholar 

  • Biondi A, Guedes RNC, Wan F-H, Desneux N (2018) Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu Rev Entomol 63:239–258

    Article  CAS  PubMed  Google Scholar 

  • Bouchelta A, Boughdad A, Blenzar A (2005) Effets biocides des alcaloïdes, des saponines et des flavonoïdes extraits de Capsicum frutescens L. (Solanaceae) sur Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). BASE 9(4):259–269

    CAS  Google Scholar 

  • Bruneton JC (2009) Pharmacognosie phytochimie plantes médicinales, 4th edn. Lavoisier, London

    Google Scholar 

  • Brunherotto R, Vendramim JD, de Oriani MAG (2010) Effects of tomato genotypes and aqueous extracts of Melia azedarach leaves and Azadirachta indica seeds on Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop Entomol 39:784–791

    Article  PubMed  Google Scholar 

  • Cahill L, Haier RJ, Fallon J, Alkire MT, Tang C, Keator D, Wu J, Mcgaugh JL (1996) Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proc Natl Acad Sci 93(15):8016–8021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos MR, Biondi A, Adiga A, Guedes RNC, Desneux N (2017) From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J Pest Sci 90(3):787–796

    Article  Google Scholar 

  • Celestino FN, Pratissoli D, Machado LC et al (2016) Control of coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae) with botanical insecticides and mineral oils. Acta Sci Agron 38:1–8

    Article  CAS  Google Scholar 

  • Césard N, Garrouste R (2017) Les Boudragues ou la nuisance à venir Vivre avec les Insectes dans l’anthropocène. Tech Cult. Rev Semestrielle D’anthropologie Des Techniques 68:84

    Google Scholar 

  • Céspedes CL, Martinez-Vázquez M, Calderón JS, Salazar JR, Aranda E (2001a) Insect growth regulatory activity of some extracts and compounds from Parthenium argentatum on fall armyworm Spodoptera frugiperda. Zeitschrift Für Naturforschung C 56(1–2):95–105

    Article  Google Scholar 

  • Céspedes CL, Alarcón J, Aranda E, Becerra J, Silva M (2001b) Insect growth regulator and insecticidal activity of β-Dihydroagarofurans from Maytenus spp. (Celastraceae). Zeitschrift Für Naturforschung C 56(7–8):603–613

    Article  Google Scholar 

  • Champagne DE, Koul O, Isman MB, Scudder GG, Towers GN (1992) Biological activity of limonoids from the Rutales. Phytochemistry 31(2):377–394

    Article  CAS  Google Scholar 

  • Charleston DS, Kfir R, Dicke M, Vet LEM (2006) Impact of botanical extracts derived from Melia azedarach and Azadirachta indica on populations of Plutella xylostella and its natural enemies: a field test of laboratory findings. Biol Control 39(1):105–114

    Article  Google Scholar 

  • da Galdino TVS, Picanço MC, Ferreira DO, Silva GAR, de Souza TC, Silva GA (2015) Is the performance of a specialist herbivore affected by female choices and the adaptability of the offspring? PLoS ONE 10(11):e0143389

    Article  PubMed  PubMed Central  Google Scholar 

  • Deguine JP, Aubertot JN, Bellon S, Côte FX, Lauri PE, Lescourret F, Ratnadass A, Scopel E, Andrieu N, Bàrberi P, Becker N (2023) Agroecological crop protection for sustainable agriculture. Adv Agron 178:1–59. https://doi.org/10.1016/bs.agron.2022.11.002

    Article  Google Scholar 

  • Deletre E, Chandre F, Williams L, Duménil C, Menut C, Martin T (2015) Electrophysiological and behavioral characterization of bioactive compounds of the Thymus vulgaris, Cymbopogon winterianus, Cuminum cyminum and Cinnamomum zeylanicum essential oils against Anopheles gambiae and prospects for their use as bednet treatments. Parasit Vectors 8(1):1–14

    Article  CAS  Google Scholar 

  • Deletre E, Chandre F, Barkman B, Menut C, Martin T (2016) Naturally occurring bioactive compounds from four repellent essential oils against Bemisia tabaci whiteflies. Pest Manag Sci 72(1):179–189

    Article  CAS  PubMed  Google Scholar 

  • Dembélé U, Lykke AM, Koné Y, Témé B, Kouyaté AM (2015) Use-value and importance of socio-cultural knowledge on Carapa procera trees in the Sudanian zone in Mali. J Ethnobiol Ethnomed 11(1):1–10

    Article  Google Scholar 

  • Desneux N, Decourtye A, Delpuech J-M (2007) The Sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  PubMed  Google Scholar 

  • Desneux N, Wajnberg E, Wyckhuys KA, Burgio G, Arpaia S et al (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83(3):197–215

    Article  Google Scholar 

  • Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84(4):403–408

    Article  Google Scholar 

  • Djenontin TS, Wotto VD, Avlessi F, Lozano P, Sohounhloué DK, Pioch D (2012) Composition of Azadirachta indica and Carapa procera (Meliaceae) seed oils and cakes obtained after oil extraction. Ind Crops Prod 38:39–45

    Article  CAS  Google Scholar 

  • Feng RY, Chen WK, Isman MB (1995) Synergism of Malathion and inhibition of midgut esterase activities by an extract from Melia toosendan (Meliaceae). Pestic Biochem Physiol 53(1):34–41. https://doi.org/10.1006/pest.1995.1052

    Article  CAS  Google Scholar 

  • Garcia-Marí F, Vercher R (2010) Description, origin and expansion of Tuta absoluta (Lepidoptera: Gelechiidae). Phytoma España 217:16–20

    Google Scholar 

  • Gonçalves-Gervásio r de CR, Vendramim JD (2007) Bioactivity of aqueous neem seeds extract on the Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) in three ways of application. Ciência e Agrotecnologia 31:28–34

    Article  Google Scholar 

  • Govindachari TR (1992) Chemical and biological investigations on Azadirachta indica (the neem tree). Curr Sci 63(3):117–122

    CAS  Google Scholar 

  • Guedes RNC, Picanço MC (2012) The tomato borer Tuta absoluta in South America: pest status, management and insecticide resistance. EPPO Bull 42(2):211–216

    Article  Google Scholar 

  • Guillemot N (2004) Le Carapa un arbre tropical aux intérêts écologiques et économiques prometteurs. Rapport de stage. Institut national agronomique Paris-Grignon (INA-PG) http://www.carapa.org/data/File/pdf/RapportdestageNicolasGuillemot.pdf, (07/08/2017)

  • Habou ZA, Ibrahim MC, Zabeirou H, Adam T (2016) Efficacité de l’huile de neem (Azadirachta indica) et de Bacillus thuringiensis (Biobit 2X) sur la dynamique de la population de Bemisia tabaci (Gennadius 1889) et Helicoverpa armigera (Hubner, 1808) dans une plantation de tomate au Niger. Int J Biol Chem Sci 10(2):497–505

    Article  Google Scholar 

  • Han P, Zhang Y, Lu Z, Wang S, Ma D, Biondi A, Desneux N (2018) Are we ready for the invasion of Tuta absoluta? Unanswered key questions for elaborating an integrated pest management package in Xinjiang, China. Entomol Gen 38:113–125

    Article  Google Scholar 

  • Hasan F, Shafiq AM (2011) Toxic effects of neem-based insecticides on Pieris brassicae (Linn.). Crop Prot 30(4):502–507. https://doi.org/10.1016/j.cropro.2010.11.029

    Article  CAS  Google Scholar 

  • Heravi P, Talebi-Jahromi K, Sabahi GA, Bandani AR (2009) Effects of growth repellent, antifeedant, toxic neem seed kernel extract on Helicoverpa armigera (Hübner) compared to two azadirachtin formulations, neem Azal and neem plus. J Agri Sci Technol 13(47):243–253

    Google Scholar 

  • Hilker M, Meiners T (2011) Plants and insect eggs: how do they affect each other? Phytochemistry 72(13):1612–1623

    Article  CAS  PubMed  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Isman MB, Koul O, Luczynski A, Kaminski J (1990) Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. J Agric Food Chem 38(6):1406–1411

    Article  CAS  Google Scholar 

  • Jayaprakasha GK, Singh RP, Pereira J, Sakariah KK (1997) Limonoids from Citrus reticulata and their moult inhibiting activity in mosquito Culex quinquefasciatus larvae. Phytochemistry 44(5):843–846

    Article  CAS  PubMed  Google Scholar 

  • Khosravi R, Sendi JJ (2013) Effect of neem pesticide (Achook) on midgut enzymatic activities and selected biochemical compounds in the hemolymph of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). J Plant Prot Res. https://doi.org/10.2478/jppr-2013-0036

    Article  Google Scholar 

  • Konno K (2011) Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72(13):1510–1530

    Article  CAS  PubMed  Google Scholar 

  • Kubo I (1993) Insect control agents from tropical plants. In: Downum KR, Romeo JT, Stafford HA (eds) Phytochemical potential of tropical plants. Recent advances in phytochemistry, vol 27. Plenum Press, New York, pp 133–151

    Chapter  Google Scholar 

  • Lee Y, Kim SH, Montell C (2010) Avoiding DEET through insect gustatory receptors. Neuron 67(4):555–561. https://doi.org/10.1016/j.neuron.2010.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin M, Bi X, Zhou L, Huang J (2022) Insecticidal triterpenes in Meliaceae: plant species, molecules, and activities: Part II (Cipadessa, Melia). Int J Mol Sci 23(10):5329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, Zalucki MP, Gordh G (2000) Biological effects of azadirachtin on Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) fed on cotton and artificial diet. Aust J Entomol 39(4):301–304

    Article  Google Scholar 

  • Maciel MV, Morais SM, Bevilaqua CML, Silva RA, Barros RS et al (2010) Chemical composition of Eucalyptus spp. essential oils and their insecticidal effects on Lutzomyia longipalpis. Vet Parasitol 167(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Magrini FE, Specht A, Gaio J, Girelli CP, Migues I, Heinzen H et al (2015) Antifeedant activity and effects of fruits and seeds extracts of Cabralea canjerana canjerana (Vell.) Mart. (Meliaceae) on the immature stages of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Ind Crops Prod 65:150–158

    Article  Google Scholar 

  • Mann SR, Kaufman EP (2012) Natural product pesticides: their development, delivery and use against insect vectors. Mini-Rev Org Chem 9(2):185–202

    Article  CAS  Google Scholar 

  • Mansour R, Brévault T, Chailleux A, Cherif A, Grissa-Lebdi K, Haddi K et al (2018) Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol Gen 38(2):83–112

    Article  Google Scholar 

  • McDonald LL, Guy RH, Speirs RD (1970) Preliminary evaluation of new candidate materials as toxicants, repellents, and attractants against stored-product insects. US Agricultural Research Service, Logan, UT, pp 1–6

    Google Scholar 

  • Mulholland DA, Parel B, Coombes PH (2000) The chemistry of the Meliaceae and Ptaeroxylaceae of southern and eastern Africa and Madagascar. Curr Org Chem 4(10):1011–1054

    Article  CAS  Google Scholar 

  • Nakatani M, Huang RC, Okamura H, Naoki H, Iwagawa T (1994) Limonoid antifeedants from Chinese Melia azedarach. Phytochemistry 36(1):39–41

    Article  CAS  Google Scholar 

  • Ortego F, López-Olguı́n J, Ruı́z M, Castañera P (1999) Effects of toxic and deterrent terpenoids on digestive protease and detoxication enzyme activities of Colorado potato beetle larvae. Pestic Biochem Physiol 63(2):76–84

    Article  CAS  Google Scholar 

  • Ouédraogo A, Lykke AM, Lankoandé B, Korbéogo G (2013) Potentials for promoting oil products identified from traditional knowledge of native trees in Burkina Faso. Ethnobot Res Appl 11:071–083

    Google Scholar 

  • Paritala V, Chiruvella KK, Thammineni C, Ghanta RG, Mohammed A (2015) Phytochemicals and antimicrobial potentials of mahogany family. Rev Bras 25(1):61–83. https://doi.org/10.1016/j.bjp.2014.11.009

    Article  CAS  Google Scholar 

  • Picanço M, Guedes RNC, Leite GLD, Fontes PCR, Da Silva E (1995) Incidência de Scrobipalpuloides absoluta em tomateiro sob diferentes sistemas de tutoramento e de controle químico. Hortic Bras 13(2):180–183

    Google Scholar 

  • Pineda S, Martínez AM, Figueroa JI, Schneider MI, Del Estal P, Viñuela E, Gómez B, Smagghe G, Budia F (2009) Influence of azadirachtin and methoxyfenozide on life parameters of Spodoptera littoralis (Lepidoptera: Noctuidae). J Econ Entomol 102(4):1490–1496

    Article  CAS  PubMed  Google Scholar 

  • Potting RPJ, Van Der Gaag DJ, Loomans A, Van der Straten M, Anderson H, MacLeod A, Castrillón JMG, Cambra GV (2013) Tuta absoluta, tomato leaf miner moth or South American tomato moth. Ministry of Agriculture, Nature and Food Quality. Plant Protection Service of the Netherlands, PRA, 28

  • Prophiro JS, Da Silva MAN, Kanis LA, Da Silva BM, Duque-Luna JE, Da Silva OS (2012) Evaluation of time toxicity, residual effect, and growth-inhibiting property of Carapa guianensis and Copaifera sp. Aedes Aegypti Parasitol Res 110(2):713–719. https://doi.org/10.1007/s00436-011-2547-5

    Article  PubMed  Google Scholar 

  • Roditakis E, Vasakis E, Garcia-Vidal L, Del Rosario MAM, Rison JL, Haxaire-Lutun MO, Nauen R, Tsagkarakou A, Bielza P (2018) A four-year survey on insecticide resistance and likelihood of chemical control failure for tomato leaf miner Tuta absoluta in the European/Asian region. J Pest Sci 91(1):421–435

    Article  Google Scholar 

  • Rosell G, Quero C, Coll J, Guerrero A (2008) Biorational insecticides in pest management. J Pestic Sci 33(2):103–121

    Article  CAS  Google Scholar 

  • Roy A, Saraf S (2006) Limonoids: overview of significant bioactive triterpenes distributed in plants kingdom. Biol Pharm Bull 29(2):191–201

    Article  CAS  PubMed  Google Scholar 

  • Sarria AL, Soares MS, Matos AP, Fernandes JB, Vieira PC, Da Silva MFG (2011) Effect of triterpenoids and limonoids isolated from Cabralea canjerana and Carapa guianensis (Meliaceae) against Spodoptera frugiperda (JE Smith). Zeitschrift Für Naturforschung C 66(5–6):245–250

    Article  CAS  Google Scholar 

  • Seck I, Hosu A, Cimpoiu C, Ndoye SF, Ba LA, Sall C, Seck M (2021) Phytochemicals content, screening and antioxidant/pro-oxidant activities of Carapa procera (barks) (Meliaceae). S Afr J Bot 137:369–376

    Article  CAS  Google Scholar 

  • Shannag HK, Capinera JL, Freihat NM (2015) Effects of neem-based insecticides on consumption and utilization of food in larvae of Spodoptera eridania (Lepidoptera: Noctuidae). J Insect Sci 15(1):152

    Article  CAS  Google Scholar 

  • Silva OS, Prophiro JS, Nogared JC, Kanis L, Emerick S, Blazius RD, Romão PR (2006) Larvicidal effect of andiroba oil, Carapa guianensis (Meliaceae), against Aedes aegypti. J Am Mosq Control Assoc 22(4):699–701

    Article  PubMed  Google Scholar 

  • Silva MA, Bezerra-Silva GCD, Vendramim JD, Mastrangelo T (2013) Sublethal effect of neem extract on mediterranean fruit fly adults. Rev Bras Frutic 35:93–101

    Article  Google Scholar 

  • Silva RS, Tomaz AC, Lopes MC, Martins JC, Xavier VM, Picanço MC (2016) Toxicity of botanical insecticides on Diaphania hyalinata, their selectivity for the predatory ant Paratrechina sp. and their potential phytotoxicity on pumpkin. Int J Pest Manag 62(2):95–104

    Article  CAS  Google Scholar 

  • Silvie P (2022) Plant-based extracts for cotton pest management in Sub-Saharan Africa: a review. Bot Lett 170(1):1–14. https://doi.org/10.1080/23818107.2022.2122556

    Article  CAS  Google Scholar 

  • Sinan KI, Ferrarese I, Aktumsek A, Peron G, Glamocilja J, Sokovic M, Nenadić M, Dall’Acqua S, Zengin G (2021) NMR and LC-MSn coupled with pharmacological network analysis for the assessment of phytochemical content and biopharmaceutical potential of Carapa procera extracts. J Pharm Biomed Anal 203:114–184

    Article  Google Scholar 

  • Siqueira HÁA, Guedes RNC, Picanço MC (2000) Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agric for Entomol 2(2):147–153

    Article  Google Scholar 

  • Sombie A, Bazongo P, Wangrawa D, Ilboudo M, Ilboubo Z, Yameogo F, Romba R, Ouilly J, Sanon A, Badolo A (2020) Proprietes insecticides de l’huile fixe et des extraits terpeniques des amandes de Carapa procera DC contre Anopheles gambiae SL et Drosophila sp. Annale De L’université Joseph KI-ZERBO Série C 16:1–13

    Google Scholar 

  • Tang D, Wang C, Luo L, Qin J (2000) Comparative study on the responses of maxillary sensilla styloconica of cotton boll worm Helicoverpa armigera and Oriental tobacco budworm H. assulta larvae to phytochemicals. Sci China, Ser C Life Sci 43(6):606–612

    Article  CAS  Google Scholar 

  • Tanzubil PB, McCaffery AR (1990) Effects of azadirachtin and aqueous neem seed extracts on survival, growth and development of the African armyworm. Spodoptera Exempta Crop Prot 9(5):383–386

    Article  CAS  Google Scholar 

  • Tiétiambou FRST, Lykke AM, Korbéogo G, Thiombiano A, Ouédraogo A (2016) Perceptions et savoirs locaux sur les espèces oléagineuses locales dans le Kénédougou, Burkina Faso. Bois & Forets Des Tropiques 327:39–50

    Article  Google Scholar 

  • Tomé HVV, Martins JC, Corrêa AS, Galdino TVS, Picanço MC, Guedes RNC (2013) Azadirachtin avoidance by larvae and adult females of the tomato leafminer Tuta absoluta. Crop Prot 46:63–69

    Article  Google Scholar 

  • Torres SM, Lima LA, Maria do Carmo AL, Alves LC, Júnior VA (2020) Larvicidal activity of Azadirachta indica, Melaleuca alternifolia, and Carapa guianensis oil compounds and Carica papaya fermented extract on Aedes aegypti. bioRxiv

  • Toumnou AL, Seck D, Namkosserena S, Cisse N, Kandioura N, Sembene M (2012) Utilisation des plantes indigènes à effet insecticide pour la protection des denrées stockées contre des insectes ravageurs à Boukoko (Centrafrique). Int J Biol Chem Sci 6(3):1040–1050

    Google Scholar 

  • Trematerra P, Sciarretta A (2002) Activity of chilli, Capsicum annuum L. var. acuminatum, on stored product insects Oryzaephilus surinamensis (L.), Sitophilus oryzae (L.) and Tribolium castaneum (Herbst). IOBC WPRS Bull 25(3):177–182

    Google Scholar 

  • Tropea Garzia G, Siscaro G, Biondi A, Zappalà L (2012) Tuta absoluta, a South American pest of tomato now in the EPPO region: biology, distribution and damage. EPPO Bulletin 42(2):205–210

    Article  Google Scholar 

  • Urbaneja A, Montón H, Vanaclocha P, Mollá-Hernández Ó, Beitia FJ (2008) La polilla del tomate, Tuta absoluta, una nueva presa para los míridos Nesidiocoris tenuis y Macrolophus pygmaeus. Agrícola Vergel 320:361–367

    Google Scholar 

  • Vandenborre G, Smagghe G, Van Damme EJ (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72(13):1538–1550

    Article  CAS  PubMed  Google Scholar 

  • Vanucci C, Lange C, Lhommet G, Dupont B, Davoust D, Vauchot B, Clement JL, Brunck F (1992) An insect antifeedant limonoid from seed of khaya ivorensis. Phytochemistry 31(9):3003–3004. https://doi.org/10.1016/0031-9422(92)83435-2

    Article  CAS  Google Scholar 

  • Vendramini MCR, Mathias MIC, De Faria AU, Furquim KCS, De Souza LP, Bechara GH, Roma GC (2012) Action of andiroba oil (Carapa guianensis) on Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) semi-engorged females: Morphophysiological evaluation of reproductive system. Microsc Res Tech 75(12):1745–1754. https://doi.org/10.1002/jemt.22126

    Article  CAS  PubMed  Google Scholar 

  • Verheggen F, Fontus B (2019) First record of Tuta absoluta in Haiti. Entomologia Generalis 38(4):349–353

    Article  Google Scholar 

  • Vourc’h G, Garine-Wichatitsky D, Labbé A, Rosolowski D, Martin JL, Fritz H (2002) Monoterpene effect on feeding choice by deer. J Chem Ecol 28(12):2411–2427

    Article  PubMed  Google Scholar 

  • Weber N, Birnbaum P, Forget PM, Gueye M, Kenfack D (2010) L’huile de carapa (Carapa spp., Meliaceae) en Afrique de l’Ouest: utilisations et implications dans la conservation des peuplements naturels. Fruits 65(6):343–354

    Article  Google Scholar 

  • Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR (2011) The molecular and cellular basis of bitter taste in drosophila. Neuron 69(2):258–272. https://doi.org/10.1016/j.neuron.2011.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2017). Report on the global tobacco epidemic, 2017: monitoring tobacco use and prevention policies. World Health Organization

Download references

Acknowledgements

We gratefully acknowledge financial support from the Hortinet project, funded by Renewed Partnership for Research at the Development Service of Côte d’Ivoire (PReSeD-CI C2D) 2016–2020, coordinated by the French Research Institute for Sustainable Development (IRD). We are also grateful to the Ivorian National Center of Agricultural Research (CNRA), Felix Houphouet Boigny University of Abidjan and the French agricultural research and international cooperation organization working for the sustainable development of tropical and Mediterranean regions (CIRAD) in Côte d’Ivoire.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization contributed by KAJK, TM, AJN. Methodology contributed by KAJK, GAG, M-FNK. Formal analysis contributed by KAJK. Funding acquisition contributed by S-WMO-N, TM, NDC. Supervision contributed by TM, S-WMO-N. Writing—original draft contributed by KAJK, AJN, M-FN. K. Writing—review & editing contributed by KAJK, TM.

Corresponding author

Correspondence to Kouassi Arthur J. Konan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 52 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konan, K.A.J., N’cho, A.J., Kouadio, MF.N. et al. Effect of biological activity of Carapa procera seed oil on the tomato leaf miner, Tuta absoluta. J Plant Dis Prot 130, 1281–1292 (2023). https://doi.org/10.1007/s41348-023-00785-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-023-00785-x

Keywords

Navigation