Skip to main content
Log in

Trichoderma harzianum as a potential biological agent in control of the charcoal root rot of sugar beet

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Sugar beet is one of the most profitable crops in Serbia. The charcoal root rot is an emerging disease of sugar beet that significantly reduces yield and affects the economic viability of production. The objectives of this research were to determine the antagonist activity of selected Trichoderma harzianum isolates (T1 to T13) on two Macrophomina phaseolina isolates in vitro using a dual culture test and a volatile compounds test, as well as in vivo. The efficacy of these treatments was compared to two commercial biopesticides (Bacillomix® Original and Trifender Pro®) and one synthetic fungicide (Funomil 700 WG®). The strongest inhibition in the dual culture test was observed in the treatment with T. harzianum T2 against both tested M. phaseolina isolates. Also, the volatile compounds produced by isolates T2 and T12 exhibited the strongest inhibitory effect on M. phaseolina isolates (from 48.22 to 62.75%). Differences in efficacy were found not only between tested Trichoderma isolates, but also between M. phaseolina isolates used for inoculation which indicates different susceptibility of pathogen population to bioagent. The in vivo test confirmed the strong antagonistic effect of the T. harzianum T2 and T12 isolates. Bacillomix® Original, Trifender Pro® and Funomil® 700 WG did not express satisfactory effects in pathogen control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd-Elsalam KA (2010) Genetical and biological control of cotton ashy stem caused by Macrophomina phaseolina in an outdoor pot experiment. Saudi J Biol Sci 17(2):147–152. https://doi.org/10.1016/j.sjbs.2010.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Andrade-Hoyos P, Silva-Rojas HV, Romero-Arenas O (2020) Endophytic Trichoderma species isolated from Persea americana and Cinnamomum verum roots reduce symptoms caused by Phytophthora cinnamomi in avocado. Plants 9:1220. https://doi.org/10.3390/plants9091220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anis M, Abbasi MW, Zaki M (2010) Bioefficacy of microbial antagonists against Macrophomina phaseolina on sunflower. Pak J Bot 42:2935–2940

    Google Scholar 

  • Bailey BA, Bae H, Strem MD, Crozier J, Thomas SE, Samuels GJ, Vinyard BT, Holmes KA (2008) Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol Control 46(1):24–35

    Article  Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Condon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7(4):249–260

    CAS  PubMed  Google Scholar 

  • Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3):553–556

    Article  CAS  Google Scholar 

  • De RK (2014) Search for new fungicides against Stem rot of jute (Corchorus olitorius L. and C. capsularis L) caused by Macrophomina phaseolina (Tassi) Goid. J Mycopathol Res 52(2):217–225

    Google Scholar 

  • Eddington LV, Khew KL, Barren GI (1971) Fungitoxic spectrum of benzimidazole compounds. Phytopathology 61:42–44

    Article  Google Scholar 

  • Hajnal Jafari T, Stamenov D, Đurić S (2020) Proizvodnja i primena biopreparata. Univerzitet u Novom Sadu, Poljoprivredni fakultet, Novi Sad

    Google Scholar 

  • Howell CR (2006) Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology 96:178–180. https://doi.org/10.1094/PHYTO-96-0178

    Article  PubMed  Google Scholar 

  • Hulot JF, Hiller N (2021) Exploring the benefits of biocontrol for sustainable agriculture—a literature review on biocontrol in light of the European green deal. Institute for European Environmental Policy, Brussels, pp 1–42

    Google Scholar 

  • Jamil A, Musheer N, Ashraf S (2021) Antagonistic potential of Trichoderma harzianum and Azadirachta indica against Fusarium oxysporum f. sp. capsici for the management of chilli wilt. J Plant Dis Prot 128:161–172. https://doi.org/10.1007/s41348-020-00383-1

    Article  CAS  Google Scholar 

  • Khaledi N, Taheri P (2016) Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina. J Plant Prot Res 56(1):21–31. https://doi.org/10.1515/jppr-2016-0004

    Article  CAS  Google Scholar 

  • Kifle MH, Yobo KS, Laing MD (2017) Biocontrol of Aspergillus flavus in groundnut using Trichoderma harzianum stain kd. J Plant Dis Prot 124:51–56. https://doi.org/10.1007/s41348-016-0066-4

    Article  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Amaresan N, Bhagat S, Madhuri K, Srivastava RC (2011) Isolation and characterization of Trichoderma spp. for antagonistic activity against root rot and foliar pathogens. Indian J Microbiol 52(2):137–144. https://doi.org/10.1007/s12088-011-0205-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Salgado SJ, Andrade-Hoyos P, Parraguirre Lezama C, Rivera-Tapia A, Luna-Cruz A, Romero-Arenas O (2021) Biological control of charcoal rot in peanut crop through strains of Trichoderma spp. in Puebla, Mexico. Plants 10:2630. https://doi.org/10.3390/plants10122630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza JLH, Pérez MIS, Prieto JMG, Velásquez JDQ, Olivares JGG, Langarica HRG (2015) Antibiosis of Trichoderma spp strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina. Brazil J Microbiol 46(4):1093–1101. https://doi.org/10.1590/s1517-838246420120177

    Article  CAS  Google Scholar 

  • Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52(4):522–529. https://doi.org/10.1007/s12088-012-0308-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Olesen JE, Trnka M, Kersebaum K, Skjelvåg A, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34:96–112. https://doi.org/10.1016/j.eja.2010.11.003

    Article  Google Scholar 

  • Omar MR, Abd-Elsalam KA, Aly AA, El-Samawaty AMA, Verreet JA (2007) Diversity of Macrophomina phaseolina from cotton in Egypt: analysis of pathogenicity, chlorate phenotypes, and molecular characterization. J Plant Dis Prot 114(5):196–204. https://doi.org/10.1007/bf03356219

    Article  CAS  Google Scholar 

  • Pastrana AM, Basallote-Ureba MJ, Aguado A, Akdi K, Capote N (2016) Biological control of strawberry soil-borne pathogens Macrophomina phaseolina and Fusarium solani, using Trichoderma asperellum and Bacillus spp. Phytopathol Mediterr 55:109–120. https://doi.org/10.14601/Phytopathol_Mediterr-16363

    Article  CAS  Google Scholar 

  • Savazzini F, Longa CMO, Pertot I (2009) Impact of the biocontrol agent Trichoderma atroviride SC1 on soil microbial communities of a vineyard in northern Italy. Soil Biol Biochem 41:1457–1465. https://doi.org/10.1016/j.soilbio.2009.03.027

    Article  CAS  Google Scholar 

  • Singh N, Pandey P, Dubey RC, Maheshwari DK (2008) Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J Microbiol Biotechnol 24(9):1669–1679. https://doi.org/10.1007/s11274-008-9680-z

    Article  Google Scholar 

  • Somma M (2004) Extraction and purification of DNA. In: Querci M, Jermini M, Van den Eede G (eds) The analysis of food samples for the presence of genetically modified organisms, Special Publication No. I.03.114, Session 4, European Commission DG-JRC, pp 13–17

  • Sreedevi B, Charitha Devi M, Saigopal DVR (2011) Isolation and screening of effective Trichoderma spp. against the root rot pathogen Macrophomina phaseolina. J Agric Sci Technol 7(3):623–635

    Google Scholar 

  • Stojšin V, Budakov D, Bagi F, Marinković B, Marinkov R, Janićijević M (2011) Influence of locality on type of rot and mycopopulation of sugar beet root in 2010. Serbian Biljni Lekar 39(1):54–60

    Google Scholar 

  • Tomah AA, Abd Alamer IS, Li B, Zhang JZ (2020) A new species of Trichoderma and gliotoxin role: a new observation in enhancing biocontrol potential of T. virens against Phytophthora capsici on chili pepper. Biol Control 145:104261

    Article  CAS  Google Scholar 

  • Townsend GK, Heuberger JW (1943) Methods for estimating losses caused by diseases in fungicide experiments. Plant Dis Reptr 27(17):340–343

    CAS  Google Scholar 

  • Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Bristol, pp 311–346

    Chapter  Google Scholar 

  • White TJ, Burns T, Lee S, Taylor J (1990) Amplification and sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Zin NA, Badaluddin NA (2020) Biological functions of Trichoderma spp. for agriculture applications. Ann Agric Sci 65(2):168–178. https://doi.org/10.1016/j.aoas.2020.09.003

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Serbian Ministry of Education, Science and Technological Development (Grant No. 451-03-47/2023-01/ 200117 and 451-03-47/2023-01/ 200032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Budakov.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stankov Petreš, A., Stojšin, V., Nagl, N. et al. Trichoderma harzianum as a potential biological agent in control of the charcoal root rot of sugar beet. J Plant Dis Prot 130, 843–851 (2023). https://doi.org/10.1007/s41348-023-00716-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-023-00716-w

Keywords

Navigation