Anwar W, Ali S, Nawaz K, Iftikhar S, Javed MA, Hashem A, Alqarawi AA, Abd Allah EF, Akhter A (2018) Entomopathogenic fungus Clonostachys rosea as a biocontrol agent against whitefly (Bemisia tabaci). Biocontrol Sci Technol 28:750–760. https://doi.org/10.1080/09583157.2018.1487030
Augustyniuk-Kram A, Kram KJ (2012) Entomopathogenic Fungi as an important natural regulator of insect outbreaks in forests (review). In: Blanco JA (ed) Forest ecosystems—more than just trees. InTech, pp 265–294
Bidochka MJ, Kasperski JE, Wild GA (1998) Occurrence of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana in soils from temperate and near-northern habitats. Can J Bot 76:1198–1204. https://doi.org/10.1139/b98-115
Article
Google Scholar
Brožová J (2010) Mycoparasitic fungi Trichoderma spp. in plant protection—review. Plant Protect Sci 40:63–74. https://doi.org/10.17221/459-PPS
Bueno-Pallero FÁ, Blanco-Pérez R, Vicente-Díez I, Rodríguez Martín JA, Dionísio L, Campos-Herrera R (2020) Patterns of occurrence and activity of entomopathogenic fungi in the Algarve (Portugal) using different isolation methods. Insects 11:352. https://doi.org/10.3390/insects11060352
Article
PubMed Central
Google Scholar
Bunbury-Blanchette AL, Walker AK (2019) Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biol Control 130:127–135. https://doi.org/10.1016/j.biocontrol.2018.11.007
Article
Google Scholar
Canfora L, Malusà E, Tkaczuk C, Tartanus M, Łabanowska BH, Pinzari F (2016) Development of a method for detection and quantification of B. brongniartii and B. bassiana in soil. Sci Rep 6:22933. https://doi.org/10.1038/srep22933
Charnley AK, Collins SA (2007) Entomopathogenic fungi and their role in pest control. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 159–187
Google Scholar
Chase AR, Osborne LS, Ferguson VM (1986) Selective Isolation of the Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae from an Artificial Potting Medium. Fla Entomol 69:285. https://doi.org/10.2307/3494930
Article
Google Scholar
Czech Meteorological Services (2021) Environmental data. https://www.chmi.cz. Accessed 10 November 2021
Degani O, Dor S (2021) Trichoderma biological control to protect sensitive maize hybrids against late wilt disease in the field. JoF 7:315. https://doi.org/10.3390/jof7040315
CAS
Article
PubMed
PubMed Central
Google Scholar
Díaz A, Okabe K, Eckenrode CJ, Villani MG, Oconnor BM (2000) Biology, ecology, and management of the bulb mites of the genus Rhizoglyphus (Acari: Acaridae). Exp Appl Acarol 24:85–113. https://doi.org/10.1023/A:1006304300657
Article
PubMed
Google Scholar
Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi. Academic Press, London, New York
Google Scholar
Elad Y, Chet I, Henis Y (1981) A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica 9:59–67. https://doi.org/10.1007/BF03158330
Article
Google Scholar
El-Mougy NS, Abdel-Kader MM (2019) Biocontrol measures against onion basal rot incidence under natural field conditions. J Plant Pathol 101:579–586. https://doi.org/10.1007/s42161-018-00237-8
Article
Google Scholar
FAO Crops FAOSTAT (2021) Countries—select all; regions—world + (total); elements—production quantity; items—garlic and onion; years—2019. https://www.fao.org/home/en/. Accessed 11 May 2021
Fuxa JR (1995) Biorational Pest control agents: formulation and delivery. American Chemical Society, Washington, DC
Google Scholar
Gams W, Bissett J (2002) Trichoderma and Gliocladium. Volume 1: basic biology, taxonomy and genetics. CRC Press
Gerson U, Gafni A, Paz Z, Sztejnberg A (2008) A tale of three acaropathogenic fungi in Israel: Hirsutella, Meira and Acaromyces. Exp Appl Acarol 46:183–194. https://doi.org/10.1007/s10493-008-9202-6
CAS
Article
PubMed
Google Scholar
Ghosh SK, Pal S (2016) Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis. Environ Monit Assess 188:37. https://doi.org/10.1007/s10661-015-5053-x
CAS
Article
PubMed
Google Scholar
Goettel MS, Inglis GD (1997) Manual of techniques in insect pathology. Press, San Diego, Calif, Acad
Google Scholar
Goettel MS, Koike M, Kim JJ, Aiuchi D, Shinya R, Brodeur J (2008) Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J Invertebr Pathol 98:256–261. https://doi.org/10.1016/j.jip.2008.01.009
CAS
Article
PubMed
Google Scholar
Gupta SC, Leathers TD, Wicklow DT (1993) Hydrolytic enzymes secreted by Paecilomyces lilacinus cultured on sclerotia of Aspergillus flavus. Appl Microbiol Biotechnol 39:99–103. https://doi.org/10.1007/BF00166856
CAS
Article
Google Scholar
Hall RA (1976) A bioassay of the pathogenicity of Verticillium lecanii conidiospores on the aphid, Macrosiphoniella sanborni. J Invertebr Pathol 27:41–48. https://doi.org/10.1016/0022-2011(76)90026-4
Article
Google Scholar
Harman GE, Kubicek CP (eds) (2002) Trichoderma and Gliocladium. Volume 1: Basic biology, taxonomy and genetics. CRC Press
Hossain L, Rahman R, Khan MS (2017) Alternatives of Pesticides. In: Khan MS, Rahman MS (eds) Pesticide residue in foods. Springer International Publishing, Cham, pp 147–165
Chapter
Google Scholar
Hue AG, Voldeng HD, Savard ME, Fedak G, Tian X, Hsiang T (2009) Biological control of Fusarium head blight of wheat with Clonostachys rosea strain ACM941. Can J Plant Pathol 31:169–179. https://doi.org/10.1080/07060660909507590
Article
Google Scholar
Humber RA (2012) Identification of entomopathogenic fungi. In: Lacey LA (ed) Manual of techniques in invertebrate pathology. Academic Press, London, UK, pp 151–157
Inglis GD, Goettel MS, Butt TM, Strasser H (2001) Use of hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CABI, Wallingford, pp 23–69
Chapter
Google Scholar
Inglis GD, Enkerli J, Goettel MS (2012) Manual of techniques in invertebrate pathology, 2nd edn. Academic Press imprint of Elsevier Science, Oxford, New York
Google Scholar
Israel Meteorological Services (2021) Environmental data. https://ims.gov.il/en/SurfaceObservations. Accessed 14 November 2021
Jensen B, Knudsen IMB, Jensen DF (2000) Biological seed treatment of cereals with fresh and long-term stored formulations of Clonostachys rosea: Biocontrol efficacy against Fusarium culmorum. Eur J Plant Pathol 106:233–242. https://doi.org/10.1023/A:1008794626600
Article
Google Scholar
Jensen B, Knudsen IMB, Jensen DF (2002) Survival of conidia of Clonostachys rosea on stored barley seeds and their biocontrol efficacy against seed-borne Bipolaris sorokiniana. Biocontrol Sci Technol 12:427–441. https://doi.org/10.1080/09583150220146013
Article
Google Scholar
Jensen B, Knudsen IMB, Madsen M, Jensen DF (2004) Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of Seedborne Alternaria spp. Phytopathology 94:551–560. https://doi.org/10.1094/PHYTO.2004.94.6.551
Article
PubMed
Google Scholar
Keller S, Zimmermann G (1989) Mycopathogens of soil insects. Elsevier
Book
Google Scholar
Keller S, Kessler P, Schweizer C (2003) Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metharhizium anisopliae. Biocontrol 48:307–319. https://doi.org/10.1023/A:1023646207455
Article
Google Scholar
Kenneth R, Muttath TI, Gerson U (1979) Hirsutella thompsonii, a fungal pathogen of mites. I. Biology of the fungus in vitro. Ann Appl Biol 91:21–28
Article
Google Scholar
Keyser CA, Jensen B, Meyling NV (2016) Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat: dual effects of Metarhizium spp. and Clonostachys rosea. Pest Manag Sci 72:517–526. https://doi.org/10.1002/ps.4015
CAS
Article
PubMed
Google Scholar
Klingen I, Eilenberg J, Meadow R (2002) Effects of farming system, field margins and bait insect on the occurrence of insect pathogenic fungi in soils. Agric Ecosyst Environ 91:191–198. https://doi.org/10.1016/S0167-8809(01)00227-4
Article
Google Scholar
Konopická J, Bohatá A, Nermuť J, Jozová E, Mráček Z, Palevsky E, Zemek R (2021) Efficacy of soil isolates of entomopathogenic fungi against the bulb mite, Rhizoglyphus robini (Acari: Acaridae). Syst Appl Acarol 1149–1167. https://doi.org/10.11158/saa.26.6.11
Krauss U, Hidalgo E, Arroyo C, Piper SR (2004) Interaction Between the Entomopathogens Beauveria bassiana, Metarhizium anisopliae and Paecilomyces fumosoroseus and the Mycoparasites Clonostachys spp., Trichoderma harzianum and Lecanicillium lecanii. Biocontrol Sci Technol 14:331–346. https://doi.org/10.1080/09583150410001665196
Article
Google Scholar
Landa Z, Horňák P, Charvátová H, Osborne LS (2002) Distribution, Occurrence and potential use of entomopathogenic fungi in arable soils in Czech Republic. In: Proceedings of international conference ISTRO “Current trends in the research of soil environment.” pp 195–201
Latch GCM, Falloon RE (1976) Studies on the use of Metarhizium anisopliae to control Oryctes rhinoceros. Entomophaga 21:39–48. https://doi.org/10.1007/BF02372014
Article
Google Scholar
Lawande KE, Khar, A, Mahajan V, Srinivas PS, Sankar V, Singh RP (2009) Onion and garlic research in India. J Hortic Sci 91–119
Lebiush-Mordechai S, Erlich O, Maymon M, Freeman S, Ben-David T, Ofek T, Palevsky E, Tsror Lahkin L (2014) Bulb and Root Rot in Lily (Lilium longiflorum) and Onion (Allium cepa) in Israel. J Phytopathol 162:466–471. https://doi.org/10.1111/jph.12214
Article
Google Scholar
Majchrowska-Safaryan A, Tkaczuk C (2021) Abundance of entomopathogenic fungi in leaf litter and soil layers in forested habitats in Poland. Insects 12:134. https://doi.org/10.3390/insects12020134
Article
PubMed
PubMed Central
Google Scholar
Marti GA, Lastra CCL, Pelizza SA, García JJ (2006) Isolation of Paecilomyces lilacinus (Thom) Samson (Ascomycota: Hypocreales) from the Chagas disease vector, Triatoma infestans Klug (Hemiptera: Reduviidae) in an endemic area in Argentina. Mycopathologia 162:369–372. https://doi.org/10.1007/s11046-006-0072-3
Article
PubMed
Google Scholar
McDonald MR, de los Angeles Jaime M, Hovius MHY (2004) Management of diseases of onions and garlic. In: Naqvi SAMH (ed) Diseases of fruits and vegetables: vol II. Springer Netherlands, Dordrecht, pp 149–200
McGuire AV, Northfield TD (2020) Tropical occurrence and agricultural importance of Beauveria bassiana and Metarhizium anisopliae. Front Sustain Food Syst 4:6. https://doi.org/10.3389/fsufs.2020.00006
Article
Google Scholar
Medo J, Cagáň Ľ (2011) Factors affecting the occurrence of entomopathogenic fungi in soils of Slovakia as revealed using two methods. Biol Control 59:200–208. https://doi.org/10.1016/j.biocontrol.2011.07.020
Article
Google Scholar
Meyling NV, Eilenberg J (2006) Occurrence and distribution of soil borne entomopathogenic fungi within a single organic agroecosystem. Agric Ecosyst Environ 113:336–341. https://doi.org/10.1016/j.agee.2005.10.011
Article
Google Scholar
Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43:145–155. https://doi.org/10.1016/j.biocontrol.2007.07.007
Article
Google Scholar
Mishra RK, Jaiswal KR, Kumar D, Saabale PR, Singh A (2014) Management of major diseases and insect pests of onion and garlic: a comprehensive review. J Plant Breed Crop Sci 6:160–170. https://doi.org/10.5897/JPBCS2014.0467
Article
Google Scholar
Mohammed AA, Younus AS, Ali AN (2021) Efficacy of Clonostachys rosea, as a promising entomopathogenic fungus, against coleopteran stored product insect pests under laboratory conditions. Egypt J Biol Pest Control 31:55. https://doi.org/10.1186/s41938-021-00405-6
Article
Google Scholar
Moino A Jr, Alves SB (1999) EFEITO ANTAGÔNICO DE Trichoderma sp. NO DESENVOLVIMENTO DE Beauveria bassiana (Bals.) Vuill. e Metarhizium anisopliae (Metsch.) Sorok. Sci Agric (piracicaba, Braz) 56:217–224. https://doi.org/10.1590/S0103-90161999000100029
Article
Google Scholar
Nygren K, Dubey M, Zapparata A, Iqbal M, Tzelepis GD, Durling MB, Jensen DF, Karlsson M (2018) The mycoparasitic fungus Clonostachys rosea responds with both common and specific gene expression during interspecific interactions with fungal prey. Evol Appl 11:931–949. https://doi.org/10.1111/eva.12609
CAS
Article
PubMed
PubMed Central
Google Scholar
Ofek T, Gal S, Inbar M, Lebiush-Mordechai S, Tsror L, Palevsky E (2014) The role of onion-associated fungi in bulb mite infestation and damage to onion seedlings. Exp Appl Acarol 62:437–448. https://doi.org/10.1007/s10493-013-9750-2
Article
PubMed
Google Scholar
Okabe K, Amano H (1991) Penetration and Population Growth of the Robine Bulb Mite, Rhizoglyphus robini CLAPAREDE (Acari:Acaridae), on healthy and Fusarium-Infected Rakkyo Bulbs. Appl Entomol Zool 26:129–136. https://doi.org/10.1303/aez.26.129
Article
Google Scholar
Ownley BH, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. Biocontrol 55:113–128. https://doi.org/10.1007/s10526-009-9241-x
Article
Google Scholar
Paz Z, Burdman S, Gerson U, Sztejnberg A (2007a) Antagonistic effects of the endophytic fungus Meira geulakonigii on the citrus rust mite Phyllocoptruta oleivora: fungal antagonism of rust mite. J Appl Microbiol 103:2570–2579. https://doi.org/10.1111/j.1365-2672.2007.03512.x
CAS
Article
PubMed
Google Scholar
Paz Z, Gerson U, Sztejnberg A (2007b) Assaying three new fungi against citrus mites in the laboratory, and a field trial. Biocontrol 52:855–862. https://doi.org/10.1007/s10526-006-9060-2
Article
Google Scholar
Paz Z, Bilkis I, Gerson U, Kerem Z, Sztejnberg A (2011) Argovin, a novel natural product secreted by the fungus Meira argovae, is antagonistic to mites: a novel mycotoxin affecting the citrus rust mite. Entomol Exp Appl 140:247–253. https://doi.org/10.1111/j.1570-7458.2011.01155.x
CAS
Article
Google Scholar
Podder D, Ghosh SKr, (2019) A new application of Trichoderma asperellum as an anopheline larvicide for ecofriendly management in medical science. Sci Rep 9:1108. https://doi.org/10.1038/s41598-018-37108-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Prenerová E, Zemek R, Weyda F, Volter L (2009) Entomopathogenic fungi isolated from soil in the vicinity of Cameraria ohridella infested horse chestnut trees. In: Ehlers RU, Crickmore N, Enkerli J, Glazer I, Lopez-Ferber M, Tkaczuk C (eds) IOBC/WPRS Bulletin, pp 321–324
Quesada-Moraga E, Navas-Cortés JA, Maranhao EAA, Ortiz-Urquiza A, Santiago-Álvarez C (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol Res 111:947–966. https://doi.org/10.1016/j.mycres.2007.06.006
Article
PubMed
Google Scholar
Rabeendran N, Jones EE, Stewart A (1998) Isolation and in vitro screening of soil fungi for biological control of Sclerotinia sclerotiorum. pnzppc 51:102–106. https://doi.org/10.30843/nzpp.1998.51.11666
Rath AC, Koen TB, Yip HY (1992) The influence of abiotic factors on the distribution and abundance of Metarhizium anisopliae in Tasmanian pasture soils. Mycol Res 96:378–384. https://doi.org/10.1016/S0953-7562(09)80956-8
Article
Google Scholar
Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–98. https://doi.org/10.3852/mycologia.97.1.84
CAS
Article
Google Scholar
Rehner SA, Minnis AM, Sung G-H, Luangsa-ard JJ, Devotto L, Humber RA (2011) Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 103:1055–1073. https://doi.org/10.3852/10-302
Article
PubMed
Google Scholar
Ribeiro WRC, Butler EE (1992) Isolation of mycoparasitic species of Pythium with spiny oogonia from soil in California. Mycol Res 96:857–862. https://doi.org/10.1016/S0953-7562(09)81031-9
Article
Google Scholar
Rodríguez MA, Cabrera G, Gozzo FC, Eberlin MN, Godeas A (2011) Clonostachys rosea BAFC3874 as a Sclerotinia sclerotiorum antagonist: mechanisms involved and potential as a biocontrol agent: Clonostachys rosea as a Sclerotinia sclerotiorum antagonist. J Appl Microbiol 110:1177–1186. https://doi.org/10.1111/j.1365-2672.2011.04970.x
Article
PubMed
Google Scholar
Rombach MC, Humber RA, Roberts DW (1986) Metarhizium flavoviride var. minus, var. nov., a pathogen of plant- and leafhoppers on rice in the Philippines and Solomon Islands. Mycotaxon 1986:87–92
Samson RA, Evans HC, Latgé J-P (1988) Atlas of entomopathogenic fungi. Springer, Berlin Heidelberg, Berlin, Heidelberg
Book
Google Scholar
Sánchez-Peña SR, Lara JS-J, Medina RF (2011) Occurrence of entomopathogenic fungi from agricultural and natural ecosystems in Saltillo, México, and their virulence towards thrips and whiteflies. J Insect Sci 11:1–10. https://doi.org/10.1673/031.011.0101
Article
PubMed
PubMed Central
Google Scholar
Scheepmaker JWA, Butt TM (2010) Natural and released inoculum levels of entomopathogenic fungal biocontrol agents in soil in relation to risk assessment and in accordance with EU regulations. Biocontrol Sci Technol 20:503–552. https://doi.org/10.1080/09583150903545035
Article
Google Scholar
Sharifi-Rad J, Mnayer D, Tabanelli G, Stojanović-Radić ZZ, Sharifi-Rad M, Yousaf Z, Vallone L, Setzer WN, Iriti M (2016) Plants of the genus Allium as antibacterial agents: from tradition to pharmacy. Cell Mol Biol (Noisy-le-grand) 62:57–68
Sharma L, Bohra N, Rajput VD, Quiroz-Figueroa FR, Singh RK, Marques G (2020) Advances in entomopathogen Isolation: a case of bacteria and fungi. Microorganisms 9:16. https://doi.org/10.3390/microorganisms9010016
CAS
Article
PubMed Central
Google Scholar
Sharma L, Oliveira I, Torres L, Marques G (2018) Entomopathogenic fungi in Portuguese vineyards soils: suggesting a ‘Galleria-Tenebrio-bait method’ as bait-insects Galleria and Tenebrio significantly underestimate the respective recoveries of Metarhizium (robertsii) and Beauveria (bassiana). MC 38:1–23. https://doi.org/10.3897/mycokeys.38.26790
Siegel S, Castellan NJ (2003) Nonparametric statistics for the behavioral sciences, 2nd edn. [reprinted]. McGraw-Hill, Boston, Mass
Šimáčková K, Kročáková J, Bohatá A, Herrero N (2014) Diversity and distribution of entomopathogenic fungi in Czech Republic soils. In: 47th Annual meeting of the society for invertebrate pathology and international congress on invertebrate pathology and microbial control. Mainz, p 103
Steenberg T (1997) Natural occurrence of Beauveria bassiana (Bals.) Vuill. with focus on infectivity to Sitona species and other insects in lucerne. Dissertation, The Royal Veterinary and Agricultural University
Tkaczuk C, Król A, Majchrowska-Safaryan A, Niecewicz Ł (2014) The occurrence of entomopathogenic fungi in soils from fields cultivated in a conventional and organic system. J Ecol Eng 2014:137–144. https://doi.org/10.12911/22998993.1125468
Tsui CKM, Woodhall J, Chen W, Lévesque CA, Lau A, Schoen CD, Baschien C, Najafzadeh MJ, de Hoog S (2011) Molecular techniques for pathogen identification and fungus detection in the environment. IMA Fungus 2011:177–89. https://doi.org/10.5598/imafungus.2011.02.02.09
Vänninen I (1996) Distribution and occurrence of four entomopathogenic fungi in Finland: effect of geographical location, habitat type and soil type. Mycol Res 100:93–101. https://doi.org/10.1016/S0953-7562(96)80106-7
Article
Google Scholar
Vänninen I, Tyni-Juslin J, Hokkanen H (2000) Persistence of augmented Metarhizium anisopliae and Beauveria bassiana in Finnish agricultural soils. Biocontrol 45:201–222. https://doi.org/10.1023/A:1009998919531
Article
Google Scholar
Wen C, Xiong H, Wen J, Wen X, Wang C (2020) Trichoderma species attract Coptotermes formosanus and antagonize termite pathogen Metarhizium anisopliae. Front Microbiol 11:653. https://doi.org/10.3389/fmicb.2020.00653
Article
PubMed
PubMed Central
Google Scholar
Whipps JM, Lumsden RD (2001) Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CABI, Wallingford, pp 9–22
Chapter
Google Scholar
Zemek R, Konopická J, Bohatá A (2018) Inoculation of sphagnum-based soil substrate with entomopathogenic fungus Isaria fumosorosea (Hypocreales: Cordycipitaceae). AIP Conf Proc 1954:030009. https://doi.org/10.1063/1.5033389
CAS
Article
Google Scholar
Zimmermann G (1986) The ‘Galleria bait method’ for detection of entomopathogenic fungi in soil. J Appl Entomol 102:213–215. https://doi.org/10.1111/j.1439-0418.1986.tb00912.x
Article
Google Scholar
Zimmermann G (2007a) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920. https://doi.org/10.1080/09583150701593963
Article
Google Scholar
Zimmermann G (2007b) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596. https://doi.org/10.1080/09583150701309006
Article
Google Scholar
Zimmermann G (2008) The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci Technol 18:865–901. https://doi.org/10.1080/09583150802471812
Article
Google Scholar