Skip to main content
Log in

Cassia species: a potential source of biopesticides

  • Review
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Climate change is of significant concern for crop production as it affects crop pests and disease susceptibility, thus affecting crop health and causing a substantial decline in productivity. As the world warms, outbreaks of plant-eating insect pests are expected to intensify largely because warmer temperatures favor the pest’s biology, while boosting growth of the plants they eat. Globally, there is a high interest of finding novel botanical insecticides due to the drawbacks associated with the use of synthetic/chemical insecticides which include emergence of resistant pests, environmental pollution and various health problems such as cancer, skin itching, birth defects, infertility among others. Botanical pesticides are less toxic to the environment and public health since they are biodegradable and more specific to target pests. The current review focuses on the potential larvicidal, adulticidal, ovicidal, antifeedant and repellant activities of Cassia species against insects’ pests and plant diseases. Therefore, plant products from Cassia species may be utilized as promising biopesticides with commercial value as an alternative to synthetic pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  • Adesuji E, Oluwaniyi O, Adegoke H, Moodley R, Labulo A, Bodede O, Oseghale C (2016) Investigation of the larvicidal potential of silver nanoparticles against Culex quinquefasciatus: a case of a ubiquitous weed as a useful bioresource. J Nanomater 2016:1–11

    Google Scholar 

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol Appl Sci 3:43–55

    Google Scholar 

  • Alayo M, Femi-Oyewo M, Bakre L, Fashina A (2015) Larvicidal potential and mosquito repellent activity of Cassia mimosoides extracts. Southeast Asian J Trop Med Public Health 46(4):596–601

    CAS  PubMed  Google Scholar 

  • Alewu B, Nosiri C (2011) Pesticides and human health, pesticides in the modern world - effects of pesticides exposure. In: Stoytcheva M (ed), ISBN: 978-953-307-454-2, InTech. Available from: http://www.intechopen.com/books/pesticides-in-the-modern-world-effects-of-pesticides-exposure/pesticideand-human-health

  • Al-Samarrai G, Singh H, Syarhabil M (2012) Evaluating eco-friendly botanicals (natural plant extracts) as alternatives to synthetic fungicides. Ann Agric Environ Med 19(4):673–676

    PubMed  Google Scholar 

  • Amerasan D, Murugan K, Kovendan K, Mahesh Kumar P, Panneerselvam C, Subramaniam J, John William S, Hwang J (2012) Adulticidal and repellent properties of Cassia tora Linn. (Family: Caesalpiniaceae) against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Parasitol Res 111(5):1953–1964

    PubMed  Google Scholar 

  • Amoabeng B, Johnson A, Gurr G (2019) Natural enemy enhancement and botanical insecticide source: a review of dual use companion plants. Appl Entomol Zool 54(1):1–19

    Google Scholar 

  • Arora N, Verma M, Prakash J, Mishra J (2016) Regulation of biopesticides: global concerns and policies. In: Arora N, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, Berlin, pp 283–299

    Google Scholar 

  • Aslam M (2019) Application of genus Cassia in the treatment of Constipation: a systematic review. F1000Research 8:256

    Google Scholar 

  • Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Liang L (2016) Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci Food Saf 15:143–182

    CAS  PubMed  Google Scholar 

  • Barzman M, Barberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messean A, Moonen AC, Ratnadass A, Ricci P, Sarah JL, Sattin M (2015) Eight principles of integrated pest management. Agron Sustain Dev 35:1199–1215

    Google Scholar 

  • Baskar K, Ignacimuthu S (2012) Antifeedant, larvicidal and growth inhibitory effects of ononitol monohydrate isolated from Cassia tora L. against Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Chemosphere 88(4):384–388

    CAS  PubMed  Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238. https://doi.org/10.1016/j.tree.2012.10.012

    Article  PubMed  Google Scholar 

  • Borel B (2017) CRISPR, microbes and more are joining the war against crop killers. Nature 543:02–304

    Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Valero JR (2006) Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem 41(2):323–342

    CAS  Google Scholar 

  • Carrillo GR, Martínez GM, González CA (2015) Nanotecnología en la Actividad Agropecuaria y el Ambiente. Biblioteca Básica de Agricultura, Ciudad de México

    Google Scholar 

  • Céspedes C, Salazar J, Ariza-Castolo A, Yamaguchi L, Ávila J, Aqueveque P, Kubo I, Alarcón J (2014) Biopesticides from plants: Calceolaria integrifolia s.l. Environ Res 132:391–406

    PubMed  Google Scholar 

  • Chagnon M, Kreutzweiser D, Mitchell EA, Morrissey CA, Noome DA, Van der Sluijs JP (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22:119–134

    CAS  Google Scholar 

  • Chandler D, Bailey A, Tatchell G, Davidson G, Greaves J, Grant W (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc Lond B Biol Sci 366(1573):1987–1998

    PubMed  PubMed Central  Google Scholar 

  • Chauhan P, Shivakuma M, Kumar D (2011) Larvicidal activity of solvent leaf extracts of Cassia fistula (Linn) and Clerodendron inerme (Gaertn) on the Spodoptera litura (Insecta: Noctuidae): a potential botanical alternative. J Ecobiotechnol 3(7):01–04

    Google Scholar 

  • Connor DJ, Loomis RS, Cassman KG (2011) Crop ecology: productivity and management in agricultural systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Damalas C, Koutroubas S (2018) Current status and recent developments in biopesticide use. Agriculture 8(1):13

    Google Scholar 

  • De Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561

    PubMed  Google Scholar 

  • Derbalah A, Hamza A, Gazzy A (2012) Efficacy and safety of some plant extracts as alternatives for Sitophilus oryzae control in rice grains. J Entomol 9(2):57–67

    CAS  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, Naylor RL (2018) Increase in crop losses to insect pests in a warming climate. Science 361:916–919

    CAS  PubMed  Google Scholar 

  • Dhanasekaran M, Ignacimuthu S, Agastian P (2009) Potential hepatoprotective activity of ononitol monohydrate isolated from Cassia Tora L on carbon tetrachloride induced hepatotoxicity in wistar rats. Phytomedicine 16:891–895

    CAS  PubMed  Google Scholar 

  • Donley N (2019) The USA lags behind other agricultural nations in banning harmful pesticides. Environ Health 18(1):1–12

    Google Scholar 

  • Duke S, Cantrell C, Meepagala K, Wedge D, Tabanca N, Schrader K (2010) Natural toxins for use in pest management. Toxins (Basel) 2(8):1943–1962

    CAS  Google Scholar 

  • Duraipandiyan V, Ignacimuthu S, Paulraj M (2011) Antifeedant and larvicidal activities of Rhein isolated from the flowers of Cassia fistula L. Saudi J Biol Sci 18(2):129–133

    CAS  PubMed  Google Scholar 

  • Ebadollahi A, Ziaee M, Palla F (2020) Essential oils extracted from different species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecules 25(7):1556

    CAS  PubMed Central  Google Scholar 

  • Eddleston M, Karalliedde L, Buckley N, Fernando R, Hutchinson G, Isbister G, Konradsen F, Murray D, Piola J, Senanayake N, Sheriff R, Singh S, Siwach S, Smit L (2002) Pesticide poisoning in the developing world—a minimum pesticides list. The Lancet 360(9340):1163–1167

    Google Scholar 

  • Estévez E, Cabrera M, Molina-Díaz A, Robles-Molina J, Palacios-Díaz M (2012) Screening of emerging contaminants and priority substances (2008/105/EC) in reclaimed water for irrigation and groundwater in a volcanic aquifer (Gran Canaria, Canary Islands, Spain). Sci Total Environ 433:538–546

    PubMed  Google Scholar 

  • Gandhi N, Pillai S (2011) Control of Rhyzopertha dominica (Coleoptera: Bostrichidae) by pulverized leaves of Punica granatum (Lythraceae) and Murraya koenigii (Rutaceae). Int J Agric Biol 13:535–540

    Google Scholar 

  • Gasic S, Tanovic B (2013) Biopesticide formulations, possibility of application and future trends. Pesticidi i fitomedicina 28(2):97–102

    CAS  Google Scholar 

  • Georges K, Jayaprakasam B, Dalavoy SS, Nair MG (2008) Pestmanaging activities of plant extracts and anthraquinones from Cassia nigricans from Burkina Faso. Bioresour Technol 99(6):2037–2045

    CAS  PubMed  Google Scholar 

  • Ghayal N, Padhye A, Dhumal K (2010) Larvicidal activity of invasive weeds Cassia uniflora and Synedrella nodiflora. Int J Pharma Bio Sci 1(3):1–10

    Google Scholar 

  • Giongo AMM, Vendramim JD, Forim MR (2016) Evaluation of neem-based nanoformulations as alternative to control fall armyworm. Ciência E Agrotecnologia 40:26–36

    Google Scholar 

  • Giraldo-Rivera A, Guerrero-Alvarez G (2020) Botanical biopesticides: research and development trends, a focus on the Annonaceae family. Colomb J Hortic Sci 13(3):371–383

    Google Scholar 

  • Govindarajan M (2013) Larvicidal activity of Cassia fistula flower against culex Tritaeniorhynchus giles, Aedes albopictus skuse and Anopheles subpictus Grassi (diptera: culicidae). Int J Pure Appl Zool 1(2):117–121

    Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T (2008) Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102(2):289–292

    CAS  PubMed  Google Scholar 

  • Guo J (2004) Synchrotron radiation, soft-X-ray spectroscopy and nanomaterials. Int J Nanotechnol 1(1/2):193–225

    CAS  Google Scholar 

  • Hubbard M, Hynes R, Erlandson M, Bailey K (2014) The biochemistry behind biopesticide efficacy. Sustain Chem Process 2(1):18

    Google Scholar 

  • Huseth A, Groves R (2014) Environmental fate of soil applied neonicotinoid insecticides in an irrigated potato agroecosystem. PLoS ONE 9(5):97081

    Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    CAS  PubMed  Google Scholar 

  • Ivase T, Nyakuma B, Ogenyi B, Balogun A, Hassan M (2017) Current status, challenges, and prospects of biopesticide utilization in Nigeria. Acta Univ Sapientiae Agric Environ 9(1):95–106

    Google Scholar 

  • Jiraungkoorskul K, Jiraungkoorskul W (2015) Larvicidal and histopathological effects of Cassia siamea leaf extract against Culex quinquefasciatus. Trop Life Sci Res 26(2):15–25

    PubMed  PubMed Central  Google Scholar 

  • Kawalekar JS (2013) Role of biofertilizers and biopesticides for sustainable agriculture. J Bio Innov 2(3):73–78

    Google Scholar 

  • Khan H, Tanjina T, Irrahman J, Afia H (2017) Efficacy of fruit pulp solvent extracts of Cassia fistula Linn. against the fourth instar larvae of the mosquito Culex quinquefasciatus say. J Asiat Soc Bangladesh Sci 43(1):1–9

    Google Scholar 

  • Khan S, Uddin M, Rizwan M, Khan W, Farooq M, Sattar Shah A, Subhan F, Aziz F, Rahman K, Khan A, Ali S, Muhammad M (2020) Mechanism of insecticide resistance in insects/pests. Pol J Environ Stud 29(3):2023–2030

    CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    CAS  Google Scholar 

  • Knowles A (2005) New developments in crop protection product formulation. T and F Informa UK Ltd., Agrow Reports UK, pp 153–156

    Google Scholar 

  • Knowles A (2006) Adjuvants and additives. Agrow Reports: T&F Informa UK Ltd

  • Knowles A (2008) Recent developments of safer formulations of agrochemicals. Environmentalist 28(1):35–44

    Google Scholar 

  • Koma S (2012) Plants as potential sources of pesticidal agents: a review. In: Soundararajan RP (ed) Pesticides—advances in chemical and botanical pesticides. InTech, London

    Google Scholar 

  • Koul O (2019) Nanobiopesticides: an introduction. In: Koul O (ed) Nano-biopesticides today and future perspectives. Academic Press, Cambridge, pp 1–15

    Google Scholar 

  • Kumar S, Singh A (2014) Biopesticides for integrated crop management: environmental and regulatory aspects. J Fertil Pestic 5:e121

    Google Scholar 

  • Kumar D, Chawla R, Dhamodaram P, Balakrishnan N (2014) Larvicidal Activity of Cassia occidentalis (Linn.) against the Larvae of Bancroftian Filariasis Vector Mosquito Culex quinquefasciatus. J Parasitol Res 2014:1–5

    Google Scholar 

  • Lavanya B, Maheswaran A, Vimal Varsha N, Vignesh K, Uvarani K, Varsha R (2018) An overall view of Cassia species phytochemical constituents and its pharmacological uses. Int J Pharm Sci Res 3(1):47–50

    Google Scholar 

  • Leahy J, Mendelsohn M, Kough J, Jones R, Berckes N (2014) Biopesticide oversight and registration at the U.S. Environmental Protection Agency. In: Gross AD, Coats JR, Duke SO, Seiber JN (eds) Biopesticides: state of the art and future opportunities. American Chemical Society, Washington, pp 3–18

    Google Scholar 

  • Leng P, Zhang Z, Pan G, Zhao M (2011) Applications and development trends in biopesticides. Afr J Biotechnol 10(86):19864–19873

    CAS  Google Scholar 

  • Lengai G, Muthomi J (2018) Biopesticides and their role in sustainable agricultural production. J Biosci Med 06(06):7–41

    CAS  Google Scholar 

  • León-Silva S, Fernández-Luqueño F, López-Valdez F (2016) Silver nanoparticles (AgNP) in the environment: a review of potential risks on human and environmental health. Water Air Soil Pollut 227(9):306

    Google Scholar 

  • Lerch T, Dignac M, Nunan N, Barriuso E, Mariotti A (2009) Ageing processes and soil microbial community effects on the biodegradation of soil 13C-2,4-D nonextractable residues. Environ Pollut 157(11):2985–2993

    CAS  PubMed  Google Scholar 

  • Li L, Hu J, Yang W, Alivisatos A (2001) Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 1(7):349–351

    CAS  Google Scholar 

  • Li H, Cheng F, Wei Y, Lydy MJ, You J (2017) Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: an overview. J Hazard Mater 324:258–271

    CAS  PubMed  Google Scholar 

  • Mahmood I, Imadi S, Shazadi K, Gul A, Hakeem K (2016) Effects of pesticides on environment. In: Hakeem K, Akhtar M, Abdullah S (eds) Plant, soil and microbes. Springer, Berlin, pp 253–269

    Google Scholar 

  • Mandal B (2019) Silver nanoparticles: potential as insecticidal and microbial biopesticides. In: Koul O (ed) Nano-biopesticides today and future perspectives. Academic Press, Cambridge, pp 281–302

    Google Scholar 

  • Mazid S, Jogen K, Ratul R (2011) A review on the use of biopesticides in insect pest management. Int J Sci Adv Technol 1(7):169–178

    Google Scholar 

  • Mbatchou V, Tchouassi D, Dickson R, Annan K, Mensah A, Amponsah I, Jacob J, Cheseto X, Habtemariam S, Torto B (2017) Mosquito larvicidal activity of Cassia tora seed extract and its key anthraquinones aurantio-obtusin and obtusin. Parasites Vectors 10(1):562

    PubMed  PubMed Central  Google Scholar 

  • Medina-Pérez G, Fernández-Luqueño F, Campos-Montiel R, Sánchez-López K, Afanador-Barajas L, Prince L (2019) Nanotechnology in crop protection: status and future trends. In: Koul O (ed) Nano-biopesticides today and future perspectives. Academic Press, Cambridge, pp 17–45

    Google Scholar 

  • Mehmood S, Lateef M, Omer M, Anjum A, Rashid M, Shehzad W (2014) Adulticidal and larvicidal activity of Cassia fistula and Piper nigrumagainst malaria vector. Sci Int (Lahore) 26(1):331–334

    Google Scholar 

  • Mordue A, Blackwell A (1993) Azadirachtin: an update. J Insect Physiol 39(11):903–924

    CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    CAS  PubMed  Google Scholar 

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148

    PubMed  PubMed Central  Google Scholar 

  • Nuruzzaman M, Liu Y, Rahman M, Dharmarajan R, Duan L, Uddin A, Naidu R (2019) Nanobiopesticides: composition and preparation methods. In: Koul O (ed) Nano-biopesticides today and future perspectives. Academic Press, Cambridge, pp 69–131

    Google Scholar 

  • Packiam S (2018) Green pesticides: eco-friendly technology for integrated pest management. Acta Sci Agric 2(11):1

    Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127

    CAS  Google Scholar 

  • Pavananundt P, Jiraungkoorskul K, Kosai P, Jiraungkoorskul W (2013) Larvicidal properties of Cassia siamea leaf against Aedes aegypti larvae. Int J Mod Agric 2(1):1–8

    Google Scholar 

  • Pesticidereform.org. (n.d.) Pesticides & Human Health | Californians for Pesticide Reform. https://www.pesticidereform.org/pesticides-human-health/

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    CAS  Google Scholar 

  • Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB, Godfray HCJ, Goulson D, Hartley S, Lampkin N, Morris C, Pierzynski G, Prasad PVV, Reganold J, Rockstrom J, Smith P, Thorne P, Wratten S (2018) Global assessment of agricultural system redesign for sustainable intensification. Nat Sustain 1:441–446

    Google Scholar 

  • Raja N, Masresha G (2015) Plant based biopesticides: safer alternative for organic food production. J Fertil Pestic 6(2):e128

    Google Scholar 

  • Rajakumar G, Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118(3):196–203

    CAS  PubMed  Google Scholar 

  • Rajasekharreddy P, Rani PU (2014) Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. Mater Sci Eng, C 39(1):203–212

    CAS  Google Scholar 

  • Raji P, Abila M, Antony V (2016) A study on the antifeedant activity of Cassia fistula leaves. J Chem Pharm Res 8(6):233–236

    CAS  Google Scholar 

  • Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14:32

    Google Scholar 

  • Sâmia R, de Oliveira R, Moscardini V, Carvalho G (2016) Effects of Aqueous Extracts of Copaifera langsdorffii (Fabaceae) on the Growth and Reproduction of Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Neotrop Entomol 45(5):580–587

    PubMed  Google Scholar 

  • Satapathy S (2018) Regulatory norms and quality control of bio-pesticides in India. Int J Curr Microbiol Appl Sci 7(11):3118–3122

    CAS  Google Scholar 

  • Schmolke A, Thorbek P, Chapman P, Grimm V (2010) Ecological models and pesticide risk assessment: current modeling practice. Environ Toxicol Chem 29(4):1006–1012

    CAS  PubMed  Google Scholar 

  • Sharma D, Thapa R, Manandhar H, Shrestha S, Pradhan S (2012) Use of pesticides in Nepal and impacts on human health and environment. J Agric Environ 13:67–74

    Google Scholar 

  • Sharon M, Choudhary A, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):83–92

    Google Scholar 

  • Shu B, Zhang J, Cui G, Sun R, Yi X, Zhong G (2018) Azadirachtin affects the growth of Spodoptera litura fabricius by inducing apoptosis in larval midgut. Front Physiol 9:137

    PubMed  PubMed Central  Google Scholar 

  • Shukla N, Akansha Singh E, Kabadwa B, Sharma R, Kumar J (2019) Present status and future prospects of bio-agents in agriculture. Int J Curr Microbiol Appl Sci 8(04):2138–2153

    Google Scholar 

  • Singh S, Singh S, Yadav A (2013) A review on Cassia species: pharmacological, traditional and medicinal aspects in various countries. Am J Phytomed Clin Ther 3:291–312

    Google Scholar 

  • Sporleder M, Lacey L (2013) Biopesticides. In: Alyokhin A, Vincent C, Giordanengo P (eds) Insect pests of potato. Elsevier, Amsterdam, pp 463–497

    Google Scholar 

  • Stevenson SP, Mvumi BM, Sola P, Kamanula JF, Sileshi G, Belmain SR (2012) Pesticidal plants: a viable alternative insect pest management approach for resource-poor farming in Africa. In: Koul O, Khokhar S, Dhaliwal DS, Singh R (eds) Biopesticides in environment and food security: issues and strategies. Scientific Publishers, Jodhpur, pp 212–238

    Google Scholar 

  • Stratonovitch P, Elias J, Denholm I, Slater R, Semenov MA (2014) An individual-based model of the evolution of pesticide resistance in heterogeneous environments: control of Meligethes aeneus population in oilseed rape crops. PLoS ONE 9:e115631

    PubMed  PubMed Central  Google Scholar 

  • Struik PC, Kuyper T (2017) Sustainable intensification in agriculture: the richer shade of green. A review. Agron Sustain Dev 37:39

    Google Scholar 

  • Sumon KA, Ritika AK, Peeters E, Rashid H, Bosma RH, Rahman MS, Fatema MK, Van den Brink PJ (2018) Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms. Environ Pollut 236:432–441

    CAS  PubMed  Google Scholar 

  • Tadros T (2005) Applied surfactants. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 187–256

    Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264

    CAS  PubMed  Google Scholar 

  • Ugurlu Karaağaç S (2012) Insecticide resistance, insecticides - advances in integrated pest management. In: Perveen F (ed), ISBN: 978-953-307-780-2, InTech. Available from: http://www.intechopen.com/books/insecticides-advances-in-integrated-pest-management/insecticideresistance

  • Venkatesan R, Ravindran J, Eapen A, William J (2014) Insecticidal and growth regulating activity of crude leaf extracts of Cassia occidentalis L. (Caesalpiniaceae) against the urban malaria vector, Anopheles stephensi Liston (Diptera: Culicidae). Asian Pac J Trop Di 4:S578–S582

    Google Scholar 

  • Williamson S, Ball A, Pretty J (2008) Trends in pesticide use and drivers for safer pest management in four African countries. Crop Prot 27(10):1327–1334

    Google Scholar 

  • Yang Y, Lim M, Lee H (2003) Emodin isolated from Cassia obtusifolia (Leguminosae) seed shows larvicidal activity against three mosquito species. J Agric Food Chem 51(26):7629–7631

    CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

N.B.B.R.I. was involved in writing of review paper; D.P., J.S.-G and S.F. contributed to supervision.

Corresponding author

Correspondence to Nawaal Benazir Bint Raman Ibrahim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raman Ibrahim, N.B.B., Puchooa, D., Govinden-Soulange, J. et al. Cassia species: a potential source of biopesticides. J Plant Dis Prot 128, 339–351 (2021). https://doi.org/10.1007/s41348-020-00408-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-020-00408-9

Keywords

Navigation