Skip to main content
Log in

Identification and characterization of a cyclic lipopeptide iturin A from a marine-derived Bacillus velezensis 11-5 as a fungicidal agent to Magnaporthe oryzae in rice

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Magnaporthe oryzae is an important rice pathogen globally. However, plant beneficial microbes and their secondary metabolites to control blast disease in rice are poorly understood. In the present study, a marine-derived Bacillus velezensis 11-5 has been characterized as an antagonist against an isolate of Magnaporthe oryzae, the causal agent of rice blast disease. A cyclic lipopeptide (CLP) iturin A has been identified from the fermentation broth of B. velezensis 11-5 by nuclear magnetic resonance spectroscopy and mass spectrometry. In addition, the in vitro and in planta biocontrol activities of CLP iturin A were evaluated in the further study, respectively. The results revealed that iturin A shows significant activity on the conidia germination and the relative appressoria formation rate of M. oryzae at the concentrations of 10 and 50 µM for 12 h and for 24 h, respectively. In addition, CLP iturin A shows the significant activity to control M. oryzae in rice plants when the concentration of the compound is higher than 10 µM. Taken all results together, this study shows that B. velezensis 11-5 has the possibility to be developed as a biopesticide to control rice blast disease in rice plants, and for the first time, this study shows a CLP iturin A produced by B. velezensis 11-5 is an agrochemical to control rice blast disease both in vitro and in rice. And therefore, the results provide information on the application of B. velezensis 11-5 and its CLP iturin A as potential biopesticides to control blast disease in rice for agricultural practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amruta N, Prasanna MK, Puneeth ME, Sarika G, Kandikattu HK, Vishwanath K, Narayanaswamy S (2018) Exploring the potentiality of novel rhizospheric bacterial strains against the rice blast fungus Magnaporthe oryzae. Plant Pathol J 34:126–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Besson F, Volpon L, Tsan P, Majer Z, Vass E, Hollosi M, Noguera V, Lancelin JM (2007) NMR structure determination of a synthetic analogue of bacillomycin Lc reveals the strategic role of L-Asn1 in the natural iturinic antibiotics. Spectrochim Acta A 67:1374–1381

    Article  Google Scholar 

  • Bland JM (1996) The first synthesis of a member of the iturin family, the antifungal cyclic lipopeptide, iturin-A2. J Org Chem 61:5663–5664

    Article  CAS  Google Scholar 

  • Cawoy H, Debois D, Franzil L, Pauw ED, Thonart P, Ongena M (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol 8:281–295

    Article  CAS  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015a) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42: a review. Front Microbiol 6:780. https://doi.org/10.3389/fmicb.2015.00780

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury SP, Uhl J, Grosch R, Alqueres S, Pittroff S, Dietel K, Schmitt-Kopplin P, Borriss R, Hartmann A (2015b) Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant Microbe Interact 28:984–995

    Article  CAS  Google Scholar 

  • Cochrane SA, Vederas JC (2016) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev 36:4–31

    Article  CAS  Google Scholar 

  • Cui TB, Chai HY, Jiang LX (2012) Isolation and partial characterization of an antifungal protein produced by Bacillus licheniformis BS-3. Molecules 17:7336. https://doi.org/10.3390/molecules17067336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  Google Scholar 

  • Delcambe L (1950) Iturine, new antibiotic produced by Bacillus subtilis. C R Seances Soc Biol Fil 144:1431–1434

    CAS  PubMed  Google Scholar 

  • Dunlap CA, Kim SJ, Kwon SW, Rooney AP (2016) Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int J Syst Evol Microbiol 66:1212–1217

    Article  CAS  Google Scholar 

  • Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans ADL (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143:2983–2989

    Article  CAS  Google Scholar 

  • Garbay-Jaureguiberry C, Roques BP, Delcambe L, Peypoux F, Michel G (1978) NMR conformational study of iturin A, an antibiotic from Bacillus subtilis. FEBS Lett 93:151–156

    Article  CAS  Google Scholar 

  • Ghasemi S, Ahmadian G, Sadeghi M, Zeigler DR, Rahimian H, Ghandili S, Naghibzadeh N, Dehestani A (2011) First report of a bifunctional chitinase/lysozyme produced by Bacillus pumilus SG2. Enzyme Microb Technol 48:225–231

    Article  CAS  Google Scholar 

  • Han Q, Wu F, Wang X, Qi H, Shi L, Ren A, Liu Q, Zhao M, Tang K (2015) The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environ Microbiol 17:1166–1188

    Article  CAS  Google Scholar 

  • Hofte M, Altier N (2010) Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res Microbiol 161:464–471

    Article  Google Scholar 

  • Kajimura Y, Sugiyama M, Kaneda M (1995) Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus-subtilis Fr-2. J Antibiot 48:1095–1103

    Article  CAS  Google Scholar 

  • Kim K, Lee Y, Ha A, Kim JI, Park AR, Yu NH, Son H, Choi GJ, Park HW, Lee CW, Lee T, Lee YW, Kim JC (2017) Chemosensitization of Fusarium graminearum to chemical fungicides using cyclic lipopeptides produced by Bacillus amyloliquefaciens strain JCK-12. Front Plant Sci 8:2010. https://doi.org/10.3389/fpls.2017.02010

    Article  PubMed  PubMed Central  Google Scholar 

  • Kouzai Y, Mochizuki S, Saito A, Ando A, Minami E, Nishizawa Y (2012) Expression of a bacterial chitosanase in rice plants improves disease resistance to the rice blast fungus Magnaporthe oryzae. Plant Cell Rep 31:629–636

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellows M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Leila KG, Ines K, Omar N, Ben SI, Salem E, Ben ZR, Ines T, Monia MH, Rabeh HM, Ferid L (2016) Production and identification of iturin A lipopeptide from Bacillus methyltrophicus TEB1 for control of Phoma tracheiphila. J Basic Microbiol 56:864–871

    Article  Google Scholar 

  • Liao JH, Chen PY, Yang YL, Kan SC, Hsieh FC, Liu YC (2016) Clarification of the antagonistic effect of the lipopeptides produced by Bacillus amyloliquefaciens BPD1 against Pyricularia oryzae via in situ MALDI-TOF IMS analysis. Molecules 21:1670. https://doi.org/10.3390/molecules21121670

    Article  CAS  PubMed Central  Google Scholar 

  • Lin C, Tsai CH, Chen PY, Wu CY, Chang YL, Yang YL, Chen YL (2018) Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS ONE 13:e0196520. https://doi.org/10.1371/journal.pone.0196520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chen Z, Ng TB, Zhang J, Zhou M, Song F, Lu F, Liu Y (2007) Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28:553–559

    Article  Google Scholar 

  • Ma Z, Hu J (2018) Plipastatin A1 produced by a marine sediment-derived Bacillus amyloliquefaciens SH-B74 contributes to the control of gray mold disease in tomato. 3. Biotech 8:125. https://doi.org/10.1007/s13205-018-1144-z

    Article  Google Scholar 

  • Ma Z, Hu J, Wang X, Wang S (2014) NMR spectroscopic and MS/MS spectrometric characterization of a new lipopeptide antibiotic bacillopeptin B1 produced by a marine sediment-derived Bacillus amyloliquefaciens SH-B74. J Antibiot 67:175–178

    Article  CAS  Google Scholar 

  • Ma Z, Geudens N, Kieu NP, Sinnaeve D, Ongena M, Martins JC, Hofte M (2016) Biosynthesis, chemical structure, and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Front Microbiol 7:382. https://doi.org/10.3389/fmicb.2016.00382

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcel S, Sawers R, Oakeley E, Angliker H, Paszkowski U (2010) Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. Plant Cell 22:3177–3187

    Article  CAS  Google Scholar 

  • Nagai U, Besson F, Peypoux F (1979) Absolute-configuration of an iturinic acid as determined by CS spectrum of its DNP-para-methoxyanilide. Tetrahedron Lett 25:2359–2360

    Article  Google Scholar 

  • Nasir MN, Besson F (2012) Conformational analyses of bacillomycin D, a natural antimicrobial lipopeptide, alone or in interaction with lipid monolayers at the air-water interface. J Colloid Interface Sci 387:187–193

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  Google Scholar 

  • Rebollar A, Lopez-Garcia B (2013) PAF104, a synthetic peptide to control rice blast disease by blocking appressorium formation in Magnaporthe oryzae. Mol Plant Microbe Interact 26:1407–1416

    Article  CAS  Google Scholar 

  • Roh JY, Liu Q, Choi JY, Wang Y, Shim HJ, Xu HG, Choi GJ, Kim JC, Je YH (2009) Construction of a recombinant Bacillus velezensis strain as an integrated control agent against plant diseases and insect pests. J Microbiol Biotechnol 19:1223–1229

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, NewYork

    Google Scholar 

  • Sha Y, Wang Q, Li Y (2016) Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast. Springerplus. https://doi.org/10.1186/s40064-016-2858-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Spence C, Alff E, Johnson C, Ramos C, Donofrio N, Sundaresan V, Bais H (2014) Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol. https://doi.org/10.1186/1471-2229-14-130

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Tendulkar SR, Saikumari YK, Patel V, Raghotama S, Munshi TK, Balaram P, Chattoo BB (2007) Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J Appl Microbiol 103:2331–2339

    Article  CAS  Google Scholar 

  • Thuan NTN, Bigirimana J, Roumen E, Straeten DVD, Höfte M (2006) Molecular and pathotype analysis of the rice blast fungus in North Vietnam. Eur J Plant Pathol 114:381–396

    Article  CAS  Google Scholar 

  • Velivelli SL, De Vos P, Kromann P, Declerck S, Prestwich BD (2014) Biological control agents: from field to market, problems, and challenges. Trends Biotechnol 32:493–496

    Article  CAS  Google Scholar 

  • Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7:185–195

    Article  CAS  Google Scholar 

  • Xu JR, Hamer JE (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10:2696–2706

    Article  CAS  Google Scholar 

  • Xue C, Tian L, Xu M, Deng Z, Lin W (2008) A new 24-membered lactone and a new polyene δ-lactone from the marine bacterium Bacillus marinus. J Antibiot 61:668–674

    Article  CAS  Google Scholar 

  • Yang JH, Liu HX, Zhu GM, Pan YL, Xu LP, Guo JH (2008) Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. J Appl Microbiol 104:91–104

    CAS  PubMed  Google Scholar 

  • Ye M, Tang X, Yang R, Zhang H, Li F, Tao F, Li F, Wang Z (2018) Characteristics and application of a novel species of Bacillus: Bacillus velezensis. ACS Chem Biol 13:500–505

    Article  CAS  Google Scholar 

  • Zhang C, Zhang X, Shen S (2014) Proteome analysis for antifungal effects of Bacillus subtilis KB-1122 on Magnaporthe grisea P131. World J Microb Biot 30:1763–1774

    Article  CAS  Google Scholar 

  • Zhang WJ, Guo P, Liu M, Yang BL, Wang JH, Jiang J (2015) Isolation, identification, and optimal cultivation of a marine bacterium antagonistic to Magnaporthe grisea. Genet Mol Res. https://doi.org/10.4238/gmr.15028646

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a funding (No. 5007/382) from Gansu Province to Z.M., the grant from Science and Technology Service Network Initiative of Chinese Academy of Sciences (CAS) (Grant No. KFJ-EW-STS-143) to J.H. and the Key Research and Development Project of Gansu Province (No.18YF1NA051) to K.S. The authors thank Prof. Lan Ding (College of Life Science, Northwest Normal University) for her assistance on the microscopic experiments, and Yixuan Ren for her help on preparing glass slides samples for microscopic observation.

Author information

Authors and Affiliations

Authors

Contributions

ZM conceived and designed the study, conducted the experiments and wrote the manuscript. ZM, SZ, KS and JH improved the manuscript and approved the final version for submission.

Corresponding authors

Correspondence to Zongwang Ma or Jiangchun Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Zhang, S., Sun, K. et al. Identification and characterization of a cyclic lipopeptide iturin A from a marine-derived Bacillus velezensis 11-5 as a fungicidal agent to Magnaporthe oryzae in rice. J Plant Dis Prot 127, 15–24 (2020). https://doi.org/10.1007/s41348-019-00282-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-019-00282-0

Keywords

Navigation